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Abstract 

The task of detecting a ship is relevant for a variety of applications in both military and civilian fields, 

from maritime traffic surveillance to sea pollution monitoring. Despite the recent significant 

attention, deep learning-based object detection algorithms have received, they are still rarely 

applied in the detection of ships. Expectedly, we see even fewer applications when the goal is to detect 

specific ship classes, although those could deliver extra valuable information. In this work, we build 

a ship detection algorithm capable of distinguishing six common ship types: ore carrier, bulk cargo 

carrier, general cargo ship, container ship, fishing boat and passenger ship. To achieve this objective, 

we firstly built a deep convolutional neural network in python, taking advantage of the TensorFlow 

framework. Secondly, we analyzed our model’s ability to generalize on a new set of images, apart 

from the training and testing sets. The results showed that our proposed model is close to state-of-

the-art performance since it was able to perform well on the test set - mAP = 97.62%. There is still 

room for improvement on the model robustness, associated primarily with possible training set 

limitations. In practice, this paper will contribute to the advance of research and applications on ship 

detection. 

1. Introduction 
Ship detection plays an essential role in monitoring 

and managing marine traffics, helping prevent or 

act against various illegal activities such as 

smuggling, dumping of pollutants and illegal fishing. 

Automated Identification System (AIS) fulfills the 

task of detecting any vessel with a connected VHF 

transponder aboard, as demonstrated in (Ramos et. 

al, 2019), but fails to detect ships that either sail 

with disconnected transponders or are not legally 

required to install a transponder. Satellite, radar, 

infrared or visible light images can be alternatively 

monitored to accomplish the same task. More 

efficiently and less costly, the same data can be 

used to train machine learning models, e.g. neural 

networks. 

Despite the recent significant attention, deep 

learning-based object detection algorithms have 

received, they are still rarely applied in the 

detection of ships. Also, we see even fewer 

applications when the goal is to detect specific ship 

classes. The main reason behind that statement is 

the cost of computational power and high-quality 
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data. Modern deep learning models usually require 

several optimized Graphics Processing Units (GPUs) 

for training in order to accomplish convincing 

results, which is not affordable for many people. We 

often face a similar issue with trainable data, where 

large-scale publicly available ship datasets are still a 

shortcoming, especially when we desire ship classes 

to be individually annotated. 

Rosenblatt et. al (1957) introduce the perceptron 

concept, establishing its technical and economic 

feasibility, and allowing for the whole field of neural 

networks and deep learning to be developed. 

Krizhevsky et. al (2012) present a Deep 

Convolutional Neural Network able to 

unprecedently outperform traditional methods in 

ImageNet Computer Vision competition, one of the 

most convincing results responsible for a shift in 

deep learning. 

Bochkovskiy et al. (2020) address computational 

power problems through creating a Convolutional 

Neural Network (CNN) that operates in real-time on 

a conventional GPU, and for which training requires 

only one conventional GPU, while achieving state-

of-the-art performance. 

Shao et al. (2018) introduce a high-quality ship 

dataset, which covers six-ship types and ensures 

variations of visible proportion, scale, viewpoint, 

illumination, background and occlusion. 

Chang et. al (2019) face ship detection problem 

with an interesting deep learning approach, where 

Synthetic Aperture Radar (SAR) imagery is used as 

input data to a You Only Look Once (YOLO) v2 

modified model. 

Zhao et. al (2019) develop coupled Convolutional 

Neural Networks (CNNs) for small and densely 

clustered Synthetic Aperture Radar (SAR) ship 

detection targets, consisting of a ship proposal 

network allied with a ship discrimination network. 

In this article we built a ship detector, starting from 

the selection of a pre-trained deep convolutional 

neural network (Bochkovskiy et al., 2020) and a 

publicly available dataset. Thereafter, using a single 

conventional GPU, we further train the model to 

detect the corresponding ship classes. Finally, we 

aim to evaluate our model and discuss results in two 

different levels: How well it detects each ship class 

on images similar to the ones seen on training; How 

well it detects each ship class on a new set of 

images, which will be selected from the internet and 

annotated by us. 

The remainder of this paper is organized as follows. 

The data and methodology are described and 

analyzed in detail in Section 2. The results on both 

test sets, including evaluation metrics, detection 

samples and appropriate discussion are presented 

in Section 3. We conclude this paper in Section 4.    

2. Data and Methodology 
In this paper, annotated images are used to train 

and test a deep convolutional neural network. In 

this section, the data and the methodology applied 

to this data are presented. 

The Convolutional Neural network interprets 

images in a way that resembles human capacity, an 

analogy can be made with the human brain, which 

has millions of cells that serve only to make us see. 

They are divided into two types, cones and rods, the 

first is responsible for the colors red, green and 

blue, and the second for the shades of gray. For an 

image to be seen, it needs to stimulate millions of 

these two types of cells that will send signals with 

different frequencies according to the stimulus. 

Receiving millions of electrical signals, the human 

brain superimposes and organizes this data forming 

an image, but the image alone is not enough to 

understand it, the human brain also has training 

focused on interpreters that happen since 

childhood. Seeking to carry out this visualization 

process, CNN works by inverting the process, an 

image passes through several filters, it is as if the 

image formed by the brain were transformed again 

into signals and after they are treated, we managed 

to reach the source of stimulus and in a way that it 

differs from the human brain, it is possible to 

recognize the core by it and based on the 

information we have passed this structure is now 

able to classify, locate, detect and segment. 

2.1. Data 
The data used to train and test our model is a subset 

of the SeaShips dataset (Shao et al., 2018). It 

consists of 7000 images having a resolution of 

1920x1080 pixels and 9221 annotations of six ship 

types: ore carrier, bulk cargo carrier, general cargo 

ship, container ship, fishing boat and passenger 

ship.  

The choice of this data set was based on the 

standardization of the size of the photos, adequate 

resolution, variety of types of ships and the objects 

were already demarcated. Although the format of 

the labels was not in the proper format, this was 

easily circumvented. The set of these factors 

reinforced the choice of the dataset for training the 

neural network. 

In order to build the dataset, the authors selected 

the images from monitoring cameras in a deployed 
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coastline video surveillance system in Zhuhai City, 

China. 

Table 1 lists the number of images that contain each 

ship category in the dataset. Note that the sum of 

the values on the Images column exceeds the 

number of images because some images contain 

more than one ship category and the same applies 

to the Percentage column. 

 
Table 1 – Number of images that contain each ship  

category  

Ship Category Images Percentage 

Ore carrier 2084 29.74% 

Fishing boat 1539 21.98% 

Bulk cargo carrier 1811 25.87% 

General cargo ship 1426 20.37% 

Container ship 898 12.83% 

Passenger ship 455 6.50% 

 

In every image, the number of annotations ranges 

from one to five, although in 75% of the images 

there is only one bounding box and in almost 95% 

of the images there are either one or two 

annotations, as listed with more detail in Table 2. 

  
Table 2 – Number of images of each ship count 

Ship Count Images Percentage 

1 5254 75.06% 

2 1361 19.44% 

3 303 4.33% 

4 74 0.01% 

5 8 0.001% 

Total 7000 100% 

 

These statistics help us better understand the input 

data, which is essential for both training the model 

and analyzing its performance. 

Moving forward, we randomly selected 70% of the 

images as our training set and 30% as the testing 

set.  

Figure 1 is a sample image from the training set. It 

contains three annotated ships from the classes 

container ship, bulk cargo carrier and ore carrier.  

 

 
Figure 1 – SeaShips (Chao et. al, 2020)  image sample 

 

Furthermore, we built a relatively small dataset, 

consisting of 118 images from different sizes to be 

used as our second testing set. The images were 

selected from Google - using the International 

Maritime Organization registration code, consisting 

of three letters and seven numbers, according to 

the types of ships in our dataset - and precisely 

annotated by us using a labeling software.  Figure 2 

is a sample from our dataset. 

It is important to note that while all images from 

SeaShips are photos taken in the same geographic 

Chinese region, the images from our dataset are 

photos taken all over the world. 
 

 
Figure 2 – Image sample from our dataset 



4 

2.2. Model 
The model used in this paper is a pre-trained 

YOLOv4. You Only Look Once (YOLO) is a family of 

end-to-end object detection algorithms, i.e they 

predict the class and position of the object directly 

by a single network.  

The main justification behind our choice of model is 

the fact that YOLOv4 requires only a single 

conventional Graphics Processing Unit (GPU) for 

training, while still providing state-of-the-art speed 

and accuracy. 

Before proposing YOLOv4, Bochkovskiy et al. (2020) 

describe the modern ordinary object detector as 

consisting of two parts: Backbone which is pre-

trained on ImageNet and Head which is used to 

predict classes and bounding boxes.  

For the YOLOv4 backbone and head the authors 

chose with proper theoretical justifications 

CSPDarknet53 (Wang et. al., 2020) and YOLOv3 

(Redmon et. al., 2018), respectively.  

 

 
Figure 3 – One-stage detector architecture (Bochkovskiy 

et al., 2020) 
 

Figure 3 shows YOLOv4 architecture as a one-stage 

detector. PANet (Liu et. al., 2018) and an SPP (He et. 

al, 2015) module were added between the 

backbone and head as the Neck part which mainly 

collects feature maps from different stages.  

YOLOv4 has new features that the other 

applications which improve Convolutional Neural 

Networks (CNNs) do not use. In its construction, the 

developers assume the basics necessary 

characteristics that involved the following features: 

Weighted-Residual-Connections (WRC)(Shen et al.,

 2016) analyzes and interacts with the layers 

Residue, seeking out for better results; Cross-Stage-

Partial connection (CSP)(Wang et al., 2019) works 

on optimizing the computations; Cross-Iteration 

Batch Normalization (CmBN)(Yao et al., 2020) 

allows small batches to give a better result on the 

training iteration with a Taylor polynomial 

application; Self-adversarial-training (SAT)(Chen et 

al., 2020) and Mish-Activation (Misra et al., 2020) as 

a crucial function that improves the neural 

networks. In addition, there is increased Drop Block 

(Ghiasi et al., 2018) regularization (a model that 

randomly eliminates nodes during the training, 

which has an effect of simulating various network 

architectures), CloU loss and Mosaic data 

augmentation (use the training data to generate 

other situation with the data, some examples are 

distortion, cutout and grid mask). 

The model was pre-trained in MS COCO dataset (Lin 

et. al., 2014) to detect 80 different classes and the 

resulting weights were the starting point for our 

ship detector. It is relevant to note that the only ship 

target among the classes is “boat”. 

Our goal was to first use our data to train the model 

to detect our six ships’ classes rather than the eighty 

COCO classes. Secondly, analyze the final model’s 

ability to generalize on images it had never seen 

before. 

3. Results and Discussion 
This section presents the results from using the 

training and testing data described in section 2.1 as 

input to our ship detector described in section 2.2 

3.1. Mean Average Precision (mAP) 
Once the training process of a deep convolutional 

neural network or any other machine learning 

model is over, it is naturally convenient to evaluate 

the model somehow. 

 

 

 
Table 3 – mAP Results for IoU threshold = 50% 

Test Set mAP Ore 
carrier 

Bulk cargo 
carrier 

General 
cargo ship 

Container 
ship 

Fishing 
boat 

Passenger 
ship 

SeaShips 0.9762 0.9670 0.9743 0.9855 0.9956 0.9820 0.9525 

Ours 0.3558 0.1637 0.4447 0.2000 0.4242 0.4445 0.4576 
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Before doing that, a previous step is to understand 

the model’s output. In our case, the detector 

receives an image or video as input and draws 

bounding boxes around whatever it identifies as 

one of the six ships’ classes. Along with the 

bounding boxes coordinates, our detector outputs 

a confidence value ranging from zero to one. The 

closer to one, the more certain the network is of the 

given detection. 

Over the years several metrics have been 

developed, shared and tested by many data 

scientists. 

In that context, Mean Average Precision (mAP) has 

become the accepted way of evaluating the main 

object detection competitions such as for the COCO 

challenge. 

The mAP is the mean value of the Average Precision 

(AP) across all classes. Everingham et. al. (2010) 

determines the AP summarizes the shape of the 

precision/recall curve and it is calculated for each 

class of the detector, by taking the mean of the 

detector’s output precision value across a set of 

equally spaced recall values. 

 

In this paper, we consider a single Intersection over 

Union (IoU) threshold of 0.5, i.e., objects predicted 

by the model must overlap at least 50% the 

corresponding ground truth object in order to be 

considered a correct detection.  

Table 3 shows our detector’s performance on both 

test sets described in section 2.1, in terms of mAP. 

The following sections cover in more detail the 

results on each set. 

3.2. SeaShips Test Set 
In this section, we take a closer look at the 

performance of our detector on the SeaShips test 

set.  

Each False Positive detection indicates that the 

model drew a bounding box in a region that either 

does not encompass a ship or encompass a ship 

from a different class. 

Each False Negative, on the other hand, indicates 

that the model missed a ship that was annotated. 

Table 4 lists the number of ground-truth bounding 

boxes (GT BB), False Negatives (FN) and False 

Positives (FP) for a confidence threshold of 0.25, 

that is, all detections with a confidence score under 

0.25 are not considered. 

 

 

 

 

Table 4 – FP/FN count for confidence threshold = 0.25 

Ship Category GT BB FN FP 

Ore carrier 666 40 48 

Fishing boat 686 33 42 

Bulk cargo carrier 609 28 37 

General cargo ship 440 14 18 

Container ship 257 2 15 

Passenger ship 150 8 12 

 

Note that only 2 of the 257 container ships were 

missed by the model on the set confidence 

threshold. The category with the highest portion of 

ships missed by the model was the Ore carrier (6%). 

Besides, from the total number of bounding boxes 

drawn by the model, only 6% were false positives 

(172). 

The relatively low FP and FN count translate not 

only into high precision values, as shown in Table 3, 

but also into high recall values. 

3.2.1. Detection samples 
Figures 4-11 are SeaShips (Shao et. al, 2020) images, 

modified by us through our detector in the form of 

drawn bounding boxes. 

 

 
Figure 4 – Bulk Cargo Carrier detected through deep 

learning with a confidence score of 0,99 
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Figure 5 – Ore Carrier detected through deep learning 

with a confidence score of 1,00 

 

 
Figure 6 – Container ship detected through deep learning 

with a confidence score of 1,00 

 

Figures 4, 5 and 6 are three examples of correctly 

classified ships and precisely drawn bounding 

boxes, with very high confidence scores: 0.99, 1.0 

and 1.0, respectively. 

 

 
Figure 7 – Fishing boat detected through deep learning 

with a confidence score of 0,91 

 

 
Figure 8 – Fishing boat detected through deep learning 

with a confidence score of 0,87 

 

Figures 7 and 8 illustrate our model’s ability to 

correctly detect and classify very small objects, 

which is a known challenge in object detection. 
 

 
Figure 9 – Ore carriers under occlusion detected through 

deep learning. The ship on the left has a confidence score 

of 0,98, the ship in the middle has 0,82 and the ship on 

the right has 0,87. 

 

 
Figure 10 – Ore carrier has a confidence score of 0,91 and 

Bulk cargo carrier has a confidence score of 0,87 under 

occlusion detections 

 

Figures 9 and 10 illustrate how well our detector 

deals with another object detection challenge: 

occlusion. All five ships are correctly localized and 

classified, with over 0.8 confidence score. 

 

 
Figure 11 – Container ship at dusk detected through deep 

learning with a confidence score of 0,99 

 

Another challenge upon which our model is able to 

achieve good results in different light levels. Figure 

11 shows a correctly classified and localized 

container ship at nighttime.  
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3.3. The test set developed in this study 
In this section, we take a closer look at the 

performance of our detector on our test set.  

  

Figures 4 to 11 from the previous section give an 

excellent idea of the general characteristics from 

the ships and background present in the dataset 

used to train our model. Most ships share peculiar 

designs, quite common in the area the photos were 

taken but rarely seen worldwide. Ore carriers for 

example load the ore on deck, exposed.  

This regional factor from the training data affects 

the model’s ability to generalize on ordinary ships. 

We built a test set precisely to evaluate that 

robustness and the results are presented in this 

section. 

 

3.3.1. Detection samples 

 
Figure 12 – Bulk cargo carrier detected through deep 

learning with a confidence score of 0,88 

 

Figure 12 includes a bulk cargo carrier and two tugs. 

The ore carrier was correctly classified and 

satisfactorily localized, although the bow and stern 

of the ship are not completely inside the bounding 

box.  

Since our detector was not trained to detect 

tugboats, both were detected as fishing boats, 

which is not ideal but would be expected by the 

similarity of the classes.  

At the back of the image, two ships were incorrectly 

detected as one fishing boat. However, given the 

size and resolution of these ships, even humans 

would struggle to correctly detect them. 

 
 

 
Figure 13 – Fishing boat detected through deep learning 

with a confidence score of 0,94 

 

 
Figure 14 – General cargo ship detected through deep 

learning with a confidence score of 0,98 

 

 
Figure 15 – Container ship detected through deep 

learning with a confidence score of 0,34 

 

 
Figure 16 – Bulk cargo carrier detected through deep 

learning with a confidence score of 0,85 
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Figures 13 to 16 show fishing boat, general cargo 

ship, container ship and bulk cargo carrier 

detections, respectively.  Despite the low lighting 

level in Figure 15, our model was able to detect the 

correct class with 0.34 confidence score. 

 

 
Figure 17 – Passenger ship detected through deep 

learning with a confidence score of 0,29 

 

 
Figure 18 – Passenger ship detected through deep 

learning with a confidence score of 0,92 

 

Figures 17 and 18 are examples of successfully 

classified passenger ships. The red bounding box 

indicates that the confidence score is under 0.5 for 

Figure 17 and both bounding boxes missed some 

parts of the ships. Nevertheless, the fact that the 

model was able to collect enough features from the 

yachts to classify them as passenger ships shows 

generalization ability, given that yachts were not 

seen during training. 

 

 

Figure 19– Container ship detected through deep learning 

with a confidence score of 0,38 

 

Figure 19 is another example of an unexpected 

result. The structure of the ship and containers 

blend with the buildings in the background and the 

hull blends with the shadow on the water. Although 

the drawn bounding box misses a section of the bow 

and maybe included some of the background 

buildings, the model still classified the truncated 

container vessel correctly. 

4. Conclusion 
In this study, we verified that the proposed model is 

able and suitable to detect ships present on the 

Chinese SeaShips dataset (mAP 97.62%), although 

unable to achieve similarly convincing performance 

on the dataset we built (mAP 35.58%), as shown in 

Table 3. 

We believe that the unique characteristics of the 

Chinese ships have limited the model’s 

generalization ability. Comparing samples from the 

training set and our test set class by class, we quickly 

spot abrupt differences and therefore it is not hard 

to anticipate generalization problems.   

Still, the model surprised us positively with some 

impressive detections such as the ones discussed in 

section 3.3.1. Also, common object detection 

challenges such as occlusion, lighting level and small 

size objects were handled quite well by our detector 

as shown in section 3.2.1. 

In practice, this work can be very naturally applied 

to detect ships in real-time on the Chinese coast. 

Alternatively, our model could also be deployed 

aboard an autonomous boat to help navigation, 

with a few minor adjustments. 

From this point forward, a next step would be to 

develop a new large-scale dataset, covering more 

ship classes such as tugboats and oil tankers, and 

international vessels to hopefully allow for 

improved robustness after training.  

5. Acknowledgments 
The present work was realized with the partial 

support of ANP, National agency for Oil, Natural Gas 

and Biofuels, FINEP, Financier of Studies and 

Projects and MCTI, Ministry of science, technology 

and innovation through PRH18-ANP/MCTI, ANP 

Program for Oil, Natural Gas and Biofuels, ongoing 

at DENO, Ocean Engineering Department. 



9 

6. References 
BOCHKOVSKIY, A.; WANG, C.; LIAO, H. M. YOLOv4: 

Optimal Speed and Accuracy of Object Detection. 

arXiv: 2004.10934v1, 2020.  

 

CHANG, Y.; ANAGAW, A.; CHANG, L.; WANG, Y. C.; 

HSIAO, C.; LEE, W. Ship Detection Based on YOLOv2 

for SAR Imagery. Remote Sens. Volume 11. page 

786, 2019; https://doi.org/10.3390/rs11070786. 

 

CHEN, K.; ZHOU, H.; CHEN, Y.; MAO, X.; LI, Y.; HE, Y.; 

XUE, H.; ZHANG, W.; YU, N. Self-supervised 

Adversarial Training. arXiv:1911.06470v2, 2020. 

 

EVERINGHAM, M.; GOOL, L. V.; WILLIAMS, C. K. I.; 

WINN, J.; ZISSERMAN, A. The PASCAL Visual Object 

Classes (VOC) Challenge. Int J Comput Vis 88, pages 

303-338, 2010. 

 

GHIASI, G.; LIN, T.; LE, Q. V. DropBlock: A 

regularization method for convolutional networks. 

arXiv: 1810.12890v1, 2018.  

 

HE, K.; ZHANG, X.; REN, S., SUN, J. Spatial Pyramid 

Pooling in Deep Convolutional Networks for Visual 

Recognition. arXiv:1406.4729v4, 2015. 

 

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON G. E. 

ImageNet Classification with Deep Convolutional 

Neural Networks. In Advances in Neural Information 

Processing Systems, pages 1097-1105, 2012. 

 

LIN, T.; MAIRE, M.; BELONGIE, S.; BOURDEV, L.; 

GIRSHICK, R., HAYS, J.; PERONA, P.; RAMANAN, D.; 

ZITNICK, C. L., DOLLÁR, P. Microsoft COCO: Common 

Objects in Context. arXiv: 1405.0312, 2014. 

 

LIU, S.; QI., L.; QIN, H.; SHI, J.; JIA, J. Path 

Aggregation Network for Instance Segmentation. 

IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, Salt Lake City, UT, pages 8759-

8768, 2018. 

 

MISRA, D. Mish: A Self Regularized Non-Monotonic 

Activation Function. arXiv:1908.08681v3, 2020. 

 

RAMOS, R. F.; CEPEDA, M. F. S.; MOITA, J. V. M. d. 

O. MONTEIRO, G. P.; FIKSDAHLB, O.; CAPRACE, J.-D. 

Detecting Possible Near Miss Collisions in Santos 

Bay from AIS Big Data. Rio de Janeiro, SOBENA, 

2019. 

 

REDMON, J.; FARHADI, A. YOLOv3: An Incremental 

Improvement. arXiv:1804.02767, 2018. 

 

ROSENBLATT, F.; STIEBER, A.; SHATZ, R. H. The 

Perceptron A Perceiving and Recognizing 

Automaton. Cornell Aeronautical Laboratory, 

Buffalo, New York. Report 85-460-1, 1957. 

 

SHAO, Z.; WU, W.; WANG, Z.; DU, W; LI, C. SeaShips: 

A Large-Scale Precisely Annotated Dataset for Ship 

Detection. IEEE Transactions on multimedia. 

Volume 20. Number 10, pages 1520-9210, 2018. 

 

SHEN, F.; ZENG, G. Weighted Residuals for Very 

Deep Networks. arXiv:1605.08831v1, 2016. 

 

WANG, C.; LIAO, H. M.; YEH, I.; WU, Y.; CHEN, P.; 

HSIEH, J. CSPNet: A New Backbone that can Enhance 

Learning Capability of CNN. arXiv: 1911.11929, 

2019. 

 

WANG, C.; LIAO, H. M.; WU, Y.; CHEN, P.; HSIEH, J.; 

YEH, I. CSPNet: A New Backbone that can Enhance 

Learning Capability of CNN. IEEE/CVF Conference on 

Computer Vision and Pattern Recognition 

Workshop (CVPRW), Seattle, WA, USA, pages 1571-

1580, 2020. 

 

YAO, Z.; CAO, Y.; ZHENG, S.; HUANG, G.; LIN, S. 

Cross-Iteration Batch Normalization. 

arXiv:2002.05712v2, 2020. 

 

ZHAO, J.; Guo, W.; ZHANG, Z.; WENXIAN Y. A 

coupled convolutional neural network for small and 

densely clustered ship detection in SAR images. Sci. 

China Inf. Sci. 62, 42301 (2019). 

https://doi.org/10.1007/s11432-017-9405-6. 

 

 

 

 

 

 
 

Powered by TCPDF (www.tcpdf.org)

View publication statsView publication stats

http://www.tcpdf.org
https://www.researchgate.net/publication/345385310

