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The world merchant fleet has increased in the last decade producing an increase of fuel consumption and greenhouse 

gas emissions (GHGs). Thus, the concerns of ship-owners to implement alternatives to improve the fleet efficiency 

are growing. However, shipowners are facing barriers to implement energy efficiency technologies mainly due to 

reliability, financial and economic constraints as well as complexity of change. Actually several shipowners are 

using onboard data measurements systems that collect navigation and propulsion information of their ships. 

Therefore, after being sent via satellite and stored in data warehouse, these data are being made available to assess 

the performance of their fleets. This paper describes the use of these data to generate models in order to answer to 

the following questions: What is the ship with least efficiency in my fleet? What is the best strategy to improve the 

overall efficiency of my fleet? What is the ship that I should sell in priority? What is the influence of this maintenance 

policy on the performance of my fleet? The application case of this paper is based on one fleet of 13 ships containing 

223 trips that gather approximately 6,844 traveling days. After the definition of the key performance indicators 

(KPIs), a data envelopment analysis (DEA) models is discussed. Then, a multicriterion decision analysis (MCDA) 

model is compared to the DEA outputs. The results suggest that this new methodology can efficiently provide a 

multicriteria decision framework to shipowners avoiding engineers’ subjectivity. These findings offer a new way to 

address efficiency and performance in ship management. 

KEY WORDS: Greenhouse gas emissions; DEA; MCDA; ship 

performance. 
 

INTRODUCTION 
There are around 70,000 ships dedicated to international trade; 

this industry is responsible for 90% of world trade (ICS, 2009). 

This world merchant fleet increased in the last decade having  a 

total of 26,186 ships in 2005 around the world with a total 

international cargo demand of 5,979 millions of tons with a rise 

of 24% in 2012 and 46% to 2020 (RTI, 2008). 

 

This increase of the world ship fleet produced a growth of fuel 

consumption and consequently GHG emissions. In an effort to 

reduce the pollution, each responsible entity is taking actions to 

fight this problem (Ballou, 2013). 

 

International Maritime Organization (IMO) 

In May 2005, IMO implemented the MARPOL Annex VI 

regulation to control the utilization of international marine 

bunker fuels (RTI, 2008). Moreover, in July 2011, this 

regulation was amended to implement the Ship Energy 

Efficiency Management Plan (SEEMP) to all ships over 400 

gross tons (GT) (Ballou, 2013) with the aim to reduce the GHG 

emissions. 

 

MARPOL Annex VI regulations include limits on sulfur content 

of fuel oil as a measure to control SOX emissions and, indirectly, 

particulate matter (PM) emissions. Different environmental 

control areas (ECAs) have been established along coastlines of 

the United States (US) and Europe. In those areas a special fuel 

quality requirement exists for SOX (SOX ECA also called 

SECA). That limits or actually forces the shipowners to switch 

to cleaner yet more costly fuel, e.g. marine diesel oil (MDO) 

instead of intermediate fuel oil (IFO), as well as to reduce the 

speed of their ships, (Ballou, 2013). Also, due to increasing 

pollution of harbor cities, the SECAs have agreed to limit the 

SOX content to 0.1% in marine fuels for harbor surrounding 

region. Sulphur limits and implementation dates are illustrated 

in Figure 1, (Pedersen, 2011) and (EMSA, 2012). 

 

NOX emission limits are set for diesel engines depending on the 

engine maximum operating speed (rpm), as shown in Figure 2. 

Tier I and Tier II limits are global, while Tier III standards apply 

only in NOX Emission Control Areas (Pedersen, 2011). 

 
Figure 1. MARPOL Annex VI - Fuel Sulfur Limits 

 

 
Figure 2. MARPOL Annex VI – NOX Limits 
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Governments 

Governments are implementing in their regulation actions to 

control the emissions inside the ECAs. The use of devices for 

real-time control of fuel quality, engine speed and other 

parameters is one of the methods to monitor the vessels in these 

countries. The US Environmental Protection Agency (EPA) has 

also adopted ship emissions standards for NOX, CO2 and PM for 

all US ships with engines manufactured after 1
st
 January 2004 

(EPA, 2002), and new standards for diesel engines onboard 

large ocean vessels (Eyring, et al, 2010). 

 

Shipowners 

Shipowners are searching for alternatives to reduce the fuel 

consumption. Examples include implementing slow steaming 

strategies (speed reduction), improving their vessels with the use 

of new maintenance policies, using retrofitting or progressively 

renewing their fleets. Others alternatives to improve the 

propulsion efficiency are to redesign propellers, use antifouling 

methods, use better engines and slow steaming strategy 

(Corbett, Wang and Winebrake 2009). 

 

Although there is a need to improve the efficiency of ships, the 

shipowners have different reasons such as barriers to energy 

efficiency in which they refuse to implement the options to 

increase the efficiency mainly due to: reliability, financial and 

economic constraints, and complexity of change. To understand 

the perspective of shipowners, a research of 2013 shows that 

many barriers are related to the information available (Acciaro, 

Hoffmann and Eide, 2013). 

 

For shipowners, ship performance is the cost for a traveled 

distance divided by the amount of cargo which is transported at 

a certain speed. Operational cost is direct proportional to fuel 

consumption and energy output of the engine, when 

maintenance, consumables, crew and fixed cost are not included 

(Pundt, 2011). 

 

From the viewpoint of naval engineering, ship performance is 

described by the correlation between ship speed, delivered 

power to the propeller, and resistance force opposite to the 

direction of movement. 

 

However, this speed power curve is determined during model 

tests for calm weather conditions in an ideal condition (best 

conditions concerning weather, ship and engine). Yet, it is found 

that the ship always needs more fuel or power than estimated by 

model tests. So, in order to calculate ship performance, all 

aspects of resistance, propulsion, and speed should be 

considered (Pundt, 2011). The parameters that affect ship 

performance refer to the influence of resistance, propulsion, and 

speed (Figure 3). As defined by the International 

Standardization Organization (ISO, 2002). 

 

Ship resistance is composed of three parts: frictional, wave, and 

residual resistance without external influences. For a defined 

ship speed, waves and residual resistance are considered 

constant, Frictional resistance is variable depending on 

kinematic viscosity, salinity and water temperature. Other 

factors influence the resistance such as the ship conditions (trim 

and draft of the ship, and fouling) and weather conditions (wind, 

waves, currents). 

 

 
Figure 3. Factors affecting Ship Performance 

 

Propulsion on ships is also influenced by environment. 

Propulsion power is produced by the stored fuel on board, 

transformed into rotational mechanical power in the engine, 

transmitted by shaft line to propeller which turns it into thrust. 

All conversions go with power losses which are expressed as 

efficiency coefficients. All these parameters are not perfectly 

constant, therefore they must be taken into account. Several 

factors influence the propulsion such as the fuel quality, the 

engine efficiency and the propeller conditions (fouling). 

 

Considering that propulsion, speed, and resistance drivers are 

constantly in evolution, ship performance is always changing. 

Therefore, there is a need to assess the system efficiency to 

further optimize it. Good efficiency provides lower costs, 

minimal fuel consumption, better performance, minimum 

amount of emissions, and economical advantages. 

 

Reducing emissions of CO2, NOX and SOX is a great challenge 

that today's society is facing, and operational efficiency is 

reflected in these reductions. The effect of fuel composition 

(quality), the use of the main engines operated in nonideal loads, 

and logistics are important factors on the ship's efficiency. 

 

Control entities strictly require compliance with national and 

international standards of safety and environment. The main 

concern of shipowners is to reduce operating costs and 

maximize revenues. Developing global indicators will provide a 

tool to fulfill both shipowner operational requirements and 

required regulations. 

 

The aim of this paper is to develop a fleet efficiency model 

using an operational database in order to improve the quality of 

decision-making in the management of a ship fleet. This paper 

focus the implementation of a non-parametric method, i.e. data 

envelopment analysis (DEA) then compare the results with a 

multicriteria decision analysis (MCDA) method developed in a 

previous study (Caprace and Coronel,2013). 
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State of the Art 

In many marine engineering applications like fishery, container 

ships or supply vessels, when efficiency is analyzed, technical 

efficiency (TE), and key performance indicators (KPIs) are also 

mentioned. This section compiles the latest research regarding 

TE and KPIs. 

 

Recently measurements of fishery fleet efficiency through 

evaluation of TE were presented by (Jamnia, Mazloumzadeh 

and Keikha, 2015). They highlighted the importance of the 

amount of input data to have reliable results. Important 

contributions were provided by TE measurements. However, 

various new frontier estimation techniques were recently 

developed to improve this methodology in the transportation 

sector. (Brons, et al, 2005) depicted for instance an efficiency 

analysis of urban public transport. 

 

Another study leaded by (Ballou, 2013) developed an efficiency 

management strategy through a comprehensive plan that 

includes the following elements: a selection of KPI to measure 

the efficiency of a ship fleet, a methods to obtain input data, as 

well as the implementation of a analytical tool to process data to 

generate the results. 

 

Efficiency of containership and a cruise ship in the Caribbean 

has been analyzed by (Salonen, Heikkinen and Ilus, 2012). 

Energy efficiency operational indicator (EEOI) as a KPI based 

in specific fuel consumption (SFC), and emission factors were 

used to simulate and assess the efficiency of various routes 

scenarios depending on level of emissions, fuel consumption 

and calculation of optimal load distribution. 

 

The efficiency of a fleet of supply vessels has been recently 

assessed by (Aas, Halskau and Wallace, 2009) considering ship 

size, ship quantity, speed, capacity and types of vessels. 

 

A recent report showed that decreasing unproductive waiting 

time in port not only helps fleet efficiency but also helps to 

decrease the GHG emissions indicated in SEEMP (Johnson and 

Styhre, 2015). 

 

The previous aforementioned studies shown the importance of 

using mathematical tools to analyze the ship performance and 

efficiency. This implementation allows us to understand the 

behavior of vessels in a fleet and make better decisions about it. 

 

In the next section the concepts of data envelopment analysis 

(DEA) methodology and multicriteria decision analysis 

(MCDA) are introduced. This is followed by a description of the 

database used to assess the ships efficiency. Results are then 

presented, followed by a summary of major points and 

conclusions. 

 

 

 

METHODOLOGY 
This paper present the development of a methodology based on 

DEA to measure the performance of various decision-making 

units (DMU) represented by ships. Thereafter, the results are 

compared with the outcome of a multicriterion decision analysis 

(MCDA) of ship fleet efficiency published by (Caprace and 

Coronel 2013) whereas MCDA refers to analyzing and making 

decisions in the presence of multiple and usually conflicting 

criteria. 

 

The next sections are briefly describing the two methodologies. 

 

Data Envelopment Analysis (DEA) Techniques 
Efficiency frontiers in engineering can be determined based on 

empirical knowledge of manufacturing operations (parametric 

specification). This can be done using a deterministic or 

stochastic approach. Moreover, efficiency frontiers can also be 

estimated by observing manufacturing operations (non-

parametric specification). 

 

The stochastic parametric frontiers method and the deterministic 

method are similar, but measurement error in the frontier is 

allowed. Therefore, the error term consists of two elements 

(Brons, et al, 2005): a technical inefficiency component 

(deviation from the frontier) and a random error term with zero 

means (measurement error of the frontier). A categorization of 

frontier methodologies is shown in Table 1. 

 

Table 1. Categorization of frontier methodologies. 

  Deterministic specification  
Stochastic 

specification 

Parametric 

technology  

Frontiers based on corrected 

ordinary least squares 

(OLS) or maximum 

likelihood estimation (ML) 

models. 

Frontiers with 

explicit 

distributional 

assumptions for 

TE values 

Non-

parametric 

technology 

Frontiers based on free 

disposal hull (FDH) and 

data envelopment analysis 

(DEA) techniques. 

Resampling, 

chance 

constrained 

programming. 

 

Deterministic non-parametric methods do not assume a 

particular production function (Brons, et al, 2005). 

Mathematical programming techniques are used to construct a 

linear frontier from the observations. The main methodologies 

are the DEA method and the free disposal hull (FDH) method 

(Kerstens, 1996). 

 

The first to propose the DEA methodology as an evaluation tool 

for decision making unit (DMU) were Charnes, Cooper and 

Rhodes, 1978). DEA has been applied successfully as a 

performance evaluation tool in many fields including 

manufacturing, academic institutions, banks, pharmaceutical 

firms, small business development centers, and nursing home 

chains.  
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The efficiency measures are distances to an empirical 

production frontier, and the values are calculated on the basis of 

standard Pareto efficiency. The frontier is constructed based on 

the assumption that any linear combination of observation units 

is feasible, and the assumption of strong input and output 

disposability is vital (Brons, et al, 2005). 

 

Strong input disposability means that a feasible output level 

remains feasible after increasing any input levels; strong output 

disposability means that it is always possible to reduce the 

output level without changing input levels (Brons, et al, 2005). 

The variable returns to scale DEA model are illustrated for 

output maximization in Figure 4. Points A–E are observational 

units. The model assumes that an observed output vector can be 

smaller than the linear combination of observations D and E. 

 

 
Figure 4. Frontier of DEA Technology 

 

All observations to the southwest of the line segment D – E are 

feasible. This explains the line originating in observation E and 

extending parallel to the horizontal axis. Using a similar 

reasoning for all line segments and allowing for all linear 

combinations yields the set of possible output combinations 

bounded by the production frontier that consists of the line 

segments A – B – D – E. However, point C and F are not 

efficient according to DEA assumptions because they are not on 

the frontier. The degree of technical inefficiency for points C 

and F is measured by the fraction (OC)/(OC') and (OF)/(OF'), 

respectively (Brons, et al, 2005). 

 

DEA evaluated the relative efficiency of DMUs using multiple 

inputs to produce multiple outputs. The basic idea of DEA is to 

identify the most efficient DMU among all DMUs. DEA 

determines for each DMU a measure of efficiency obtained as a 

ratio of weighted outputs to weighted inputs (Wanke, 2012). 

 

The most efficient DMU is called a Pareto-optimal unit and is 

considered the reference for all other DMUs. An efficient bond 

can have higher rating scores of unity, while an inefficient bond 

would receive DEA scores of less than unity.  This method is 

applied to shipping industry bond ratings (Liang, Liu and Lin, 

2006). 

 

From the early 1980s, various frontier estimation techniques 

have been developed to determine best practice behavior in an 

industry (i.e. know if economic targets were reached such as 

cost minimization or output maximization). Frontier 

methodologies allow for distinguishing between efficient and 

inefficient production and the estimation of the degree of (in) 

efficiency. In the transportation literature, frontier methods have 

been used in efficiency studies on almost all transport modes 

(Kerstens, 1996), (Lan and Lin 2003).  

 

Reports were made on the use of different approaches of DEA 

and free disposal hull (FDH) models for measuring efficiency in 

65 major Brazilian airports showing the efficiency rankings 

calculated (Wanke, 2012). The findings corroborate evidences 

regarding a capacity shortfall within Brazilian airports, where 

the short-term potential for passenger/cargo consolidation per 

landing/takeoff is virtually nonexistent. 

 

During the early 1990s economic recession caused changes in 

the automotive industry worldwide.) This case was discussed 

with the use of DEA to identify the empirical efficiency frontier 

(Chen, 2011). In this work productivity standards and 

management strategies were identified for companies 

individually. 

 

(Oliveira, Camanho and Gaspar 2010) analyzed an artisanal 

bivalve dredge fleet using the data collected employing DEA 

models, identifying characteristics and practices of the best 

ships to determine the efficiency of vessels improving fishing 

results. 

 

To investigate the technical tfficiency (TE) and service 

effectiveness (SE) for some selected 76 railways (DMU) in the 

world during the period 1999-2001 (LAN and LIN, 2003) 

adopts various DEA approaches. Using TE by input-oriented 

DEA models and SE by output-oriented DEA models. The 

results shows that railways efficiency and effectiveness vary 

between the regions, but the boundaries are static during the 

study period. Outliers were detected and a sensitivity analysis 

was performed for the efficient DMU. 

 

DEA and FDH models were also used by (Kerstens, 1996) to 

study the performance of a sample of French urban transit 

companies. The results confirm findings reported elsewhere: the 

relevance of the property, the use of incentives to share the risks 

in hiring, the harmful impact of subsidies, etc. In addition, the 

network structure causes differences in performance. 

 

Multicriteria Decision Analysis (MCDA) 
Multicriteria decision analysis (MCDA) is a methodology for 

supporting decision making that has been used to support 

complex decision problems. The MCDA models in real world 

should be structured as follow: articulated, defined and 

measured by attributes. Providing an accurate MCDA model can 

often bring difficulties, (Franco and Montibeller 2009). 

 

Inadequate definition of a problem will cause poorly structured 

decisions. In the opposite case decisions will have a higher level 
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of understanding and provide a wealth of new information about 

the problem (Mabin and Beattie 2006). 

 

The outcome of any decision-making model depends on the 

information available, and the type of decision criterion may 

vary according to the kind of ship operation. Therefore, models 

of decision-making should consider all available information as 

a whole. In multiple criteria decision making (MCDM), to make 

decisions, different elements to be examined and evaluated 

should be chosen using a set of criteria. These elements are 

called alternatives (Caprace and Coronel 2013). 

 

The selection of alternatives submitted to a multicriteria 

evaluation represents a complex problem. Usually there is no 

optimal solution; no alternative is the best one on each criterion. 

A better quality implies a higher price. Sometimes, the criteria 

are conflicting and compromise solutions should be considered 

(Brans and Mareschal, 1994). 

 

Over time it many mathematical methods have been proposed to 

simplify the decision-making process, where one of the most 

used is presented by (Brans and Mareschal, 1994) called 

Preference Ranking Organization Method for Enrichment 

Evaluation (PROMETHEE). 

 

This method is based on a mutual comparison of each 

alternative pair with respect to each of the selected criteria. In 

order to rank the alternative, it is necessary to define preference 

function P (a,b) for alternatives a and b after defining the 

criteria. Alternatives a and b are evaluated according to the 

criteria functions. It is considered that alternative a is better than 

alternative b according to criterion f, if f (a) > f (b). The 

decision maker has the possibility to assign the preference to 

one of the alternatives on the basis of such comparison (Tomic, 

Marinkovic and Janosevic, 2011). 

 

 

DATA DESCRIPTION 
This paper focused the study on a ship fleet of 13 vessels as 

described in Table 2. These ships completed a total of 223 

voyages (individual travels) as described in Table 3. Each 

voyage is composed of daily records (mean value of the day, i.e. 

the noon report) of the navigational data. In this paper these 

items have been called route points and represent a total of 

6,844 records. 

 

Table 2. Ship Fleet Description (13 vessels) 

Description Mean 
Standard 

Deviation 

Total Length (m) 289.48 16.68 

Design speed (Knots) 14.22 0.77 

DWT (Tons) 179 437.62 33 350.56 

Breadth (m) 46.69 3.64 

Depth (m) 24.46 0.88 

Draught (m) 17.98 0.71 

Max. displacement (Tons) 202 052.08 36 273.87 

 

Table 3. Voyage Description (223 elements) 

Description Mean 
Standard 

Deviation 

Number of routes 16.86 11.38 

Average daily 

performance speed 

(Knots) 

12.70 1.40 

Total IFO consumption 810.80 547.18 

Total covered distance 

(Nautical Miles) 
4886.58 3199.98 

Total Cargo (Tons) 140592.91 59615.69 

 

Both laden and ballast condition have been considered 

separately for the next part of the study. 

 

 

MODEL 
The model developed is using DEA at the route point level, for 

both ballast and laden conditions. The estimates presented here 

are based on output-orientated DEA-CCR (Charnes, Cooper and 

Rhodes 1978) and DEA-BCC (Banker, Charnes and Cooper 

1984) models, which means that outputs are maximized while 

inputs are kept constant. Afterwards the results are gathered by 

voyage and finally by ship. The outranking of the ships 

efficiency is then calculated. Finally the DEA model is 

compared with a MCDA model calculated by (Caprace and 

Coronel 2013). 

 

Definition of KPIs 
In this paper, ship efficiency is obtained through the assessment 

of various key performance indicators (KPIs) that are measuring 

the relative performance of each studied criterion. The number 

of KPIs is heavily dependent on the availability of both 

quantitative and qualitative data (Caprace and Coronel 2013). 

The definition of these criteria, based on knowledge and 

expertise is presented below: 

 

 The average daily performance speed (S) 

 The ship delivery year (DY) 

 The gross tonnage (GT) 

 The specific fuel oil consumption (SC) 

 The admiralty coefficient (AC) that refers to 

propulsion efficiency (PEA) 

 The CO2 emission (ECO2) 

 The NOX emission (ENOX) 

 The SOX emission (ESOX) 

 The ship work per deadweight (SW) 

 The payload/cargo (C) 

 

Average Daily Performance Speed Route (S) 

S is the real average daily speed of the ship in knots. This KPI is 

measuring how far a ship is operating on its design speed. 
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Delivered year (DY) 

DY is defined as the delivery year of the ship. This KPI is 

measuring how old is a ship in the fleet. An older ship will 

normally be assumed to perform worse than a newer ship. 

 

The Gross Tonnage (GT) 

GT denotes the gross registered tonnage for each vessel. This 

KPI is measuring the relative size of the ships of the fleet. A 

bigger ship will normally be assumed to be more efficient than a 

smaller one (effect of scale). 

 

Specific consumption (SC) 

SC, defined in Equation 1, represents the specific fuel oil 

consumption for both Intermediate Fuel Oil (IFO) and Marine 

Diesel Oil (MDO) per knot, per nautical mile, per hour and per 

ton of payload/cargo. To obtain the two fuel oil consumptions, 

an equivalent cost factor f has been considered. A higher 

specific consumption denotes a lower efficiency. 

 
MtDV

MDOfIFO
SC






   (1)
 

 

Where    V [knots] speed, 

        D [nautical mile] distance of travel, 

         t [t] hour, 

         M  [tons] payload/cargo carried, 

         f [constant] cost factor equal to 1.46. 

 

Admiralty Coefficient (AC) - propulsion efficiency 

If two ships are similar in type, displacement, power and speed, 

then their Admiralty Coefficient (AC), defined by the 

Equation 2, will be similar in values, (Barrass, 2004). Their AC 

varies between 300-600 with the higher values representing the 

more efficient vessels. 

P

VW
AC

33/2 


    (2)
 

 

Where    W [tons] ship displacement, 

        V [knots] speed, with V≤ 20 knots, 

         P [kW] power measured at the thrust block. 

 

CO2 emission (ECO2) 

(IMO, 2009) defined an expression of emission efficiency 

expressed in the form of CO2 emitted per unit of transport work. 

This coefficient is called the energy efficiency operational 

indicator (EEOI). The ECO2 is measured in tons CO2/(tons * 

Nautical miles) and given in Equation 3. When considering the 

overall form of the ECO2, it is clear that in order to reduce the 

CO2 for a given ship at a given speed, a decrease in propulsive 

power must be achieved and/or improvements made in engine 

efficiency with a reduction in CF (Acomi and Acomi, 2014). A 

higher value of this indicator denotes a lower efficiency. 

DM

CFFC
ECO

j jj







2    (3)
 

 

Where    j the fuel type 

        FC [kg] the mass of consumed fuel 

         CF [t- CO2/t-fuel] the fuel mass to CO2 mass 

conversion factor, see Table 4. 

        D [nautical mile] distance of travel 

         M  [tons] cargo carried. 

 

Table 4. Fuel mass to CO2 mass conversion factors CF 

Type of fuel Carbon content CF 

Diesel/Gas Oil 0.875 3.20600 

LFO – Light Fuel Oil 0.860 3.15104 

HFO – Heavy Fuel Oil 0.850 3.11440 

LPG – Liquefied Petroleum 

Gas – Propane 0.819 3.00000 

LPG – Liquefied Petroleum 

Gas – Butane 0.827 3.03000 

LNG – Liquefied Natural Gas 0.750 2.75000 

 

NOX emission (ENOX) 

The NOX emissions are empirical (European Environment 

Agency, 2009) and are defined by Table 5 depending on engine 

and fuel type. 

 

Table 5. NOX emission factor given in [kg/tons fuel] 

 
RPM BFO 

MDO or 

MGO 

Slow speed engine ≤ 300 89.7 88.6 

Medium speed 

engine 

>300 and 

≤900 63.4 63.1 

High speed engine >900 57.7 57.1 
 

Equation 4 gives the expression to assess ENOX in kg-NOX/t-

fuel depending of Table 5. A higher value of this indicator 

denotes a lower efficiency. 

DM

CNFC
ENO

j jj

x






   (4)
 

 

Where    j the fuel type, 

        FC [kg] the mass of consumed fuel, 

         CN [kg- NOX/t-fuel] the fuel mass to NOX 

mass conversion factor, 

        D [nautical mile] distance of travel, 

         M  [tons] cargo carried, 

 

SOX emission (ESOX) 

The equation 5 gives the expression to assess ESOX emissions in 

kg-SOX/t-fuel depending on the type and sulfur content of the 

fuel (Cooper 2002). One has to multiply total bunker 

consumption by the percentage of sulfur present in the fuel and 

subsequently by a factor of 20 to compute SO2 emissions. The 

20 SOX factor is exact and comes from the chemical reaction of 

sulfur and oxygen to produce SO2. We made the hypothesis that 

the average sulfur content is respectively for IFO and MDO, 



Fun-sang   Improving Ship Fleet Performance Using Non Parametric Models  
     7 

 

2.5% and 0.2%. A higher value of this indicator denotes a lower 

efficiency. 

DM

CSFC
ESO

j jj

x






   (5)
 

 

Where    j the fuel type, 

        FC [kg] the mass of consumed fuel, 

         CS [kg- SOX/t-fuel] the fuel mass to SOX 

mass conversion factor, 

        D [nautical mile] distance of travel, 

         M  [tons] cargo carried, 

 

Ship work per deadweight (SW) 

This KPI is defined as the ship work divided by the deadweight 

in tons. Ship work as explained above is the cargo/payload 

carried in tons multiplied by the distance traveled in nautical 

miles defined in the Equation 6. The higher this indicator is, the 

better the efficiency. 

DWT

DM
SW




     (6)
 

 

Where    D [nautical mile] distance of travel, 

         M  [tons] cargo carried, 

         DWT  [tons] deadweight, 

 

Cargo (C) 
C represents the total cargo/payload quantity carried in tons. In 

the case of ballast condition, the C value corresponds to the 

average quantity of ballast water carried onboard. 

 

Data preparation 
All inputs and outputs parameters were normalized using  

Equation 7:  

MinMax

Mini

toi
XX

XX
X




10,    (7) 

Where   Xi each data point i, 

        XMin the minimal among all the data points, 

        XMax the maximal among all the data points, 

        Xi,0 to 1 the data point i normalized between 0 and 1. 

 

After data treatment, extreme outliers were excluded using 

Equations 8 and 9. The outliers represents 3,102 records of 

6,844 which means 45%. See Figure 5 for DEA inputs and 

Figure 6 for DEA outputs. 
 

 IQRQp  31    (8) 

 

 IQRQp  33    (9)
 

Where   p data points, 

        Q1 the lower quartile, 

        Q3 the upper quartile, 

        IQR the distance between Q1 and Q3. 

 

 
Figure 5. Inputs boxplot including outliers’ values 

 

 
Figure 6. Outputs boxplot including outliers’ values 

 

Models definition 
 

Model 1 – Data Envelopment Analysis (DEA) 
DEA has been applied separately on ballast and laden conditions 

at route point level. For each submodel, inputs and outputs are 

detailed in the Table 6 and Table 7 respectively. The difference 

states in the ship work and cargo quantity KPIs that we are 

trying to minimize for ballast conditions and maximize for laden 

condition. Therefore, the DEA results were gathered (ballast and 

laden condition together) at voyage level and then at ship level. 
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Table 6. Input and output values for ballast condition 

Inputs Outputs 

S: Average daily performance 

speed route. 

1-ECO2: CO2 emission 

DY: Ship delivered year. 1-ENOX: NOX emission 

GT: Gross tonnage. 1-ESOX: SOX emission 

SC: Specific Consumption (IFO 

and MDO) per ton of cargo. 

1-SW: Ship work per 

deadweight 

Ac: Admiralty coefficient. 1-C: Cargo quantity carried. 

 

Table 7. Input and output values for laden condition 

Inputs Outputs 

S: Average daily performance 

speed route. 

1-CO2: CO2 emission 

DY: Ship delivered year. 1-NOX: NOX emission 

GT: Gross tonnage. 1-SOX: SOX emission 

SC: Specific Consumption (IFO 

and MDO) per ton of cargo. 

SW: Ship work per 

deadweight 

Ac: Admiralty coefficient. C: Cargo quantity carried. 

 

 Table 6 shows the output values, the emissions output values 

are one minus the value that corresponds to minimize the 

emission factor or output orientation in the model. The ship 

work per deadweight and cargo quantity carried have the same 

characteristics as emissions. 

 

Model 2 – Multicriterion Decision Analysis (MCDA) 
The second model considers the ship level. This is based on a 

MCDA methodology called PROMETHEE previously 

published by (Caprace and Coronel, 2013). 

 

This model indicates that the results of multicriteria analysis 

hinge on the weighting allocated and the thresholds set. The 

importance of each criterion depends on the weights and can 

influence the final outcome of the entire calculation procedure. 

Three scenarios with three different weight vectors were 

formulated to highlight the influence of the weight of the 

emissions on the decision corresponding to Table 8. 

 

Table 8. Definition of weights per criteria in different scenarios 

Group  Criteria 
W1 

[%] 

W2 

[%] 

W3 

[%] 

Propulsion 

efficiency 

[PE] 

Admiralty coefficient (AC) 7 6 8 

Heickel coefficient (HC) 7 6 8 

Emissions 

[EM] 

CO2 emission (ECO2) 4.66 9.66 1.67 

NOX emission (ENOX) 4.66 9.66 1.67 

SOX emission (ESOX) 4.66 9.66 1.67 

  
Specific fuel oil consumption 

(SC) 
14 12 16 

  Deadweight (DW) 14 12 16 

  
Average daily performance 

speed (S) 
14 12 16 

  Ship delivery year (DY) 14 12 16 

  Ship work per deadweight (SW) 14 12 16 

To compare the results of DEA with MCDA, the results of 

Model 1 are gathered per voyage, and subsequently per ship. 

 

 

RESULTS AND DISCUSSION 
Results are presented in each level of information in the next 

sections. 

 

Ship Level 
Figure 7 presents the results of output-oriented DEA 

methodology corresponding to ballast and laden conditions. A 

higher outranking flow represents a better alternative. A third 

curve is plotted on the figure and represents the global model, 

i.e. the average between ballast and laden condition. The results 

show that the efficiency of ships is generally lower in ballast 

condition. In contrast to the other ships, SHIP2 has a better 

performance in ballast condition than in laden condition. It is 

explained by the fact that this ship requires less ballast water 

than other ships to be operated in ballast condition. 

 

 
Figure 7. DEA classification of ship efficiency in ballast and 

laden conditions. 

 

With the selected inputs and outputs, the values of SHIP5 show 

the weakest performance, while the highest outranking flow is 

given for SHIP14. SHIP5 is one of the newest ship, but present 

high emissions, high consumption of oil, high speed, while 

Admiralty coefficient is medium to low. In contrast, SHIP14 is 

the oldest ship, but present low emissions, low consumption of 

oil, low speed, while Admiralty coefficient is medium to low 

too. 

 

Figure 8 shows the classification of the DEA model compared 

to the delivery year of the ship, where it can be seen that not 

necessarily the older ships have the worst efficiency or the 

newer ships the best efficiency. In this case, SHIP5 is one of the 

newest ships but has worst efficiency. It is explained by the high 

oil consumption (rank 4) and high emissions (rank 3). So, 
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despite being among the newest is providing poor performance 

due to the characteristics of the indicators shown. 

 

 
Figure 8. DEA classification of ship performance (black line) 

and delivery year (bars) 

 

To fulfill the SEEMP, GHG emissions must be reduced. Figure 

9 shows that SHIP 6, 14 and 15 are amongst the most efficient 

ships in laden conditions. Concurrently they are also the best for 

emissions. In opposite, SHIP1 presents high emissions whilst it 

is one the most efficient vessel (rank 2). It is explained by the 

fact that the SHIP1 route points (DMUs values) are in majority 

defining the DEA frontier (see Figure 10). 

 

 
Figure 9. DEA classification of ship performance and emissions 

in laden conditions 

 

 
Figure 10. DEA classification of ship performance and 

percentage of DMUs (route points) on DEA frontier 

 

Figure 11 presents the results of PROMETHEE methodology. 

Again a higher outranking flow is a better alternative. With the 

selected inputs, the rankings of SHIP1, SHIP2 and SHIP3 

indicate weak performance of most criteria, whereas the ranking 

values of SHIP10 indicates strong criteria performance. 

However, it is notable that weights given to each criterion in 

MCDA methodology make the difference in making decisions 

knowing that the SHIP10 is the newest, and SHIP1, SHIP2 and 

SHIP3 are the oldest in the fleet. 

 

 
Figure 11. PROMETHEE classification of ship performance 

 

Both models, the DEA and MCDA are bringing different 

information at different levels. 

 

MCDA model is applied at the ship level. The outranking flow 

will depend on weights applied to each criterion. A ship will 

have the best rank if it maximizes each measured criterion. This 

explains why SHIP1, which is performing badly in almost all 

KPIs, is obtaining the worst position in the ranking, e.g. it is an 

old ship which has a poor propulsion efficiency, high 

consumption and high emissions. 

 

In contrast, DEA gave an outranking of the fleet depending on 

how the ships are performing, i.e. how the ships are using the 

input to give a maximum of outputs. In that case SHIP1 is close 

to the DEA frontier which means that it is one of the best 

alternatives. Therefore, even if SHIP1 is an old ship, with poor 

efficiency, high consumption and high emission, it uses 

efficiently the given input to provide the outputs (DEA frontier). 

 

Another interesting outcome of the study can be highlighted 

looking at SHIP5 that is one of the youngest ship in the fleet. 

However, it is ranked in last position in DEA model and 

amongst the worst in MCDA model. An analysis of MCDA 

model shows that SHIP5 has low propulsion efficiency, high 

consumption and high level of emissions. In addition, it can be 

concluded from the DEA model that SHIP5 does not efficiently 

use the input to maximize the creation of outputs. This means 

that both models indicate that this ship is has bad performances.  
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Hence, if the shipowner should sell one ship, the preference to 

sell will not go to the oldest ships (e.g. SHIP1, SHIP2 or 

SHIP3), but rather on one ship that is performing badly (e.g. 

SHIP 5). 

 

From this analysis we conclude that both models are making 

sense and can help the decision making of shipowners and 

operators. 

 

Voyage Level 
Figure 12 represents the results of output-oriented DEA 

methodology for both ballast and laden conditions gathered by 

voyage. As an example, consecutive voyages of SHIP9 have 

been plotted. That represents a time frame of 2.5 years. Ship 

efficiency performance is clearly degraded after voyages and 

faster for ballast condition than for laden condition. In average, 

we observe a loss of 2% of efficiency in about 20 voyages. 

 

 
Figure 12. DEA classification of ship efficiency indicator for 

SHIP9 in ballast and laden conditions 

 

One reason to explain this efficiency reduction is that hull 

surface condition due to fouling has a major influence on power 

demand and consequently in ship performance. That directly 

depends on ship age and date of the last hull maintenance. 

Therefore, various maintenance policies could be applied to try 

to recover a part of the lost efficiency. For instance, the 

shipowner can try to change the frequency of hull fairing or 

order an underwater propeller cleaning. 

 

CONCLUSIONS AND FUTURE WORK 
Shipowners and ship operators are constantly seeking to raise 

their profit margins and reduce their risks. Better use of  the 

resources involved in the ship operation, i.e. maximizing outputs 

while keeping input constants, is therefore a solution that can be 

considered to solve this issue. 

 

A methodology to outrank the efficiency of various ships in a 

fleet has been introduced in this paper using both DEA and 

MCDA. This provides a way to compare similar and dissimilar 

ship types and size during their operation. MCDA have been 

applied at the ship level while DEA has been applied at the 

route point level. 

 

The results show that the two models are bringing different level 

of information. MCDA will give an outranking of the fleet 

where the best alternative is represented by the ship which is 

performing well in almost all KPIs. While DEA gives an 

outranking of the fleet depending on how the ships are 

performing, i.e. how the ships are using the input to give the 

outputs. We discussed that both models are making sense and 

can help the decision making of the shipowners and operators. 

 

A future work that will focus the development of time depends 

on KPIs that will allow to follow the ship efficiency over time. 

This is important to take into account the various contingency 

methods used to try to recover a part of the fleet efficiency such 

as maintenance policies, dry docking frequency, etc. Robustness 

of the model will also be tested deeper with the use of 

bootstrapping methods. 
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