

Improving Steel Stockyard Planning by Coupling

Optimization with Stochastic Simulation

Atakan SELAMOGLU

Master Thesis

Presented in partial fulfillment of the requirements for the double degree:
“Advanced Master in Naval Architecture” conferred by University of Liege

“Master of Sciences in Applied Mechanics, specialization in Hydrodynamics,
Energetics and Propulsion” conferred by Ecole Centrale de Nantes

Developed at West Pomeranian University of Technology, Szczecin and Federal

University of Rio de Janeiro, Rio de Janeiro in the framework of the

“EMSHIP”
Erasmus Mundus Master Course in
“Integrated Advanced Ship Design”

Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC

Supervisor: Dr. Remigiusz Iwankowicz, West Pomeranian University of
Technology, Szczecin, Poland

 Prof. PhD Jean-David Caprace, Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil

Reviewer: Prof. Dr.-Ing. Robert Bronsart, Universität Rostock, Rostock,

Germany

Szczecin, February 2016

P 2 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 3

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

CONTENT

LIST OF FIGURES .. 5

LIST OF TABLES .. 6

ACKNOWLEDGEMENTS ... 7

DECLARATION OF AUTHORSHIP .. 8

ABSTRACT .. 9

1. INTRODUCTION ... 10

1.1. Context .. 10

1.2. Economics of Ship Building .. 10

1.3. Global Shipbuilding Market ... 13

1.4. State of the art .. 15

1.4.1. Lean manufacturing in ship building ... 15

1.4.2. Simulation in shipbuilding ... 18

1.4.3. Optimization in ship building ... 19

1.5. Gap .. 21

1.6. Objective ... 22

2. METHODOLOGY ... 24

2.1. Steel Stockyard and Activities ... 24

2.2. Simulation .. 26

2.2.1. Discrete event simulation .. 26

2.2.2. Software, basic elements and modelling .. 27

2.2.3. Simulation .. 28

2.3. Optimization .. 33

2.3.1. Multi-objective optimization and genetic algorithm .. 33

2.3.2. Software .. 38

2.3.3. Optimization model ... 40

2.3.4. Coupling and set-up... 46

3. RESULTS ... 55

3.1. Case 1 .. 57

3.2. Cases 2 and 3 ... 64

4. CONCLUSION ... 65

5. FUTURE WORK ... 66

6. REFERENCES .. 67

P 4 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

7. APPENDICES ... 69

7.1. Appendix A .. 69

7.2. Appendix B .. 74

7.3. Appendix C... 78

7.4. Appendix D .. 79

7.5. Appendix E ... 84

7.6. Appendix F ... 91

LIST OF FIGURES

Figure 1: Cost distribution of building a merchant ship, Available from Stopford (1997) 11

Figure 2: Stages of shipbuilding process .. 11

Figure 3: World new orders of merchant ships with 100 Gross Tonnage and over between the years

1975 and 2014, Available from Shipbuilding Statistics, 2015 ... 13

Figure 4: Atlantico Sul shipyard layout, Available from, www.estaleiroatlanticosul.com.br 25

Figure 5: Steel stockyard model in QUEST ... 29

Figure 6: Stockyard operations flowchart ... 32

Figure 7: Multi-objective optimization process, Available from Justesen, 2009 34

Figure 8: Decision and objective spaces, Available from Justesen, 2009 .. 35

Figure 9: Working principle of MOGA.. 37

Figure 10: Crossing ... 37

Figure 11: Mutation ... 38

Figure 12: MODEFRONTIER view, Available from http://www.deskeng.com/de/esteco-unveils-

modefrontier-2014/ .. 39

Figure 13: Design variables, objective functions and constraints ... 40

Figure 14: Optimization loop ... 47

Figure 15: Scheduler .. 48

Figure 16: Input Template Editor – Number of steel plates allowed in a lot 50

Figure 17: Percentage of errors and feasible results ... 57

Figure 18: Number of plates allowed in a lot vs number of iterations ... 58

Figure 19: Source frequency vs number of iterations .. 59

Figure 20: Number of active rows in section A vs number of iterations ... 59

Figure 21: Number of active rows in section B vs number of iterations .. 60

Figure 22: Number of active rows in section C vs number of iterations .. 60

Figure 23: WIP vs number of iterations ... 61

Figure 24: Number of active buffers vs number of iterations .. 62

Figure 25: Pareto graph - Number of active buffers vs WIP .. 63

P 6 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

LIST OF TABLES

Table 1: Competitiveness factors in countries ... 14

Table 2: 7 major wastes in lean point of view ... 15

Table 3: Thickness, dimension and weight values of steel plates that are used in simulation 30

Table 4: Time steps for each case.. 55

Table 5: Source freuquency boundaries for each case .. 56

Table 6: Optimum results .. 64

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 7

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

ACKNOWLEDGEMENTS

This master thesis was prepared within the European master course EMSHIP Integrated

Advanced Ship Design. The research part was conducted at Federal University of Rio de

Janeiro (UFRJ) in the Simulation Laboratory of Ship Building Processes (LABSEN). The

thesis was written in West Pomerian University of Technology (ZUT), Szczecin, Poland.

I would like to thank Professor Jean-David Caprace, my supervisor in UFRJ, for his guidance

and support throughout my project. He shared his experience, knowledge and vision with me

and he encouraged me during the whole internship.

I also would like to tell my appreciations to Professor Remigiusz Iwańkowicz, my thesis

supervisor in ZUT. He shared his knowledge with me and supported me during the writing of

the thesis. He gave precious ideas and supplied great guidance to my work.

I want to address my special thanks to Gabriel Premoli Monteiro, who helped me with his

knowledge and time during the research in LABSEN. He shared his computer skills with me.

I also would like to thank whole my colleagues in LABSEN for their helps.

I would like to offer my appreciations to my friend Doğukan Melih Görmüş and my other

friends, colleagues and professors in EMSHIP as well for their supports throughout whole

program.

Finally I want thank my family who always supported me with my education and works. I

owe everything I accomplish to them.

.

P 8 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

DECLARATION OF AUTHORSHIP

I declare that this thesis and the work presented in it are my own and have been generated by

me as the result of my own original research.

Where I have consulted the published work of others, this is always clearly attributed.

Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

This thesis contains no material that has been submitted previously, in whole or in part, for

the award of any other academic degree or diploma.

I cede copyright of the thesis in favour of the University of West Pomerian University of

Technology (ZUT), Szczecin, Poland.

Date: 15.01.2016 Signature

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 9

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

ABSTRACT

Ship building involves complicated production processes in a highly competitive

environment. Therefore improving and obtaining more efficient production facilities is getting

more and more important. This fact results in the increase of usage of simulation and

optimization tools in the industry. However, coupling these two fields of applications is still

not common. This paper proposes a new application by coupling two commercial tools

present in the market, QUEST by Delmia for Discrete Event Simulation (DES) and

MODEFRONTIER for optimization in a case of improving a steel stockyard in a shipyard. A

multi-objective optimization is carried out by taking three design variables and aiming to

optimize the objective functions. Number of steel plate piles in stockyard, steel plate capacity

of each pile and frequency of steel plate arrival to shipyard are selected as design variables.

The objectives are minimizing the area used for stocking and minimizing the Work In

Progress (WIP). It is suggested that shipyards with different steel processing capacities would

require different sizes of stockyards and different frequencies of incoming steel plates.

Therefore a layout plan should be made based on running optimization tasks. The findings

provide that production cost can be reduced by carrying out proper planning. The fundamental

knowledge of coupling optimization and stochastic simulation tools may result in significant

reduction of production costs by minimizing storing area and work in progress. The new

solution is also valid for other fields of ship building such as block erection or steel

processing and may be modified for further applications.

P 10 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

1. INTRODUCTION

1.1. Context

The work presented covers the optimization of a steel stockyard of Atlantico Sul shipyard that

is located in Ipojuca, in the state of Pernambuco, Northeast of Brazil. The study focused the

coupling of a Discrete Event Simulation (DES) and an optimization software, which are

respectively QUEST and MODEFRONTIER. The aim is to obtain a more efficient process

and offer a solution for a real industrial problem.

In such cases, where an optimization task is carried out related with production processes, the

main goal is generally reducing the cost. There are several factors that contribute to this

purpose such as decreasing the time required, reducing the area that is used or using fewer

resources (cranes, conveyors, etc.). In this thesis, a multi-objective optimization will be

presented with the aim of minimizing the area used for storage of steel plates and minimizing

the Work In Progress (WIP). The objectives and related parameters will be justified in the

next sections.

For better understanding the importance of the subject and understanding the reasons of

selection of the parameters and defining the objectives, economics of shipbuilding and global

shipbuilding market will be described initially. Lean manufacturing in shipbuilding, use of

DES and optimization approaches and tools in shipbuilding industry will also be discussed in

the section “State of the art”.

1.2. Economics of Ship Building

A tanker, bulk carrier or other types of ships which can be classified under the title of

“merchant ship” is world’s largest product that is produced in a factory. It requires tons of

materials with the vast majority of steel. Besides steel, several other items such as cables,

pipes or furniture are also covered in the production of a merchant ship. Therefore,

shipbuilding process is a complex process, which includes several disciplines and thousands

of operations. Shipyards are plants that consist of many different production facilities in order

to fulfil the required actions.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 11

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Stopford (1997) states materials covers more than the half of shipbuilding cost. There are

several other contributing costs such as engine and labour. Figure 1 shows the costs of

building a merchant ship briefly.

Figure 1: Cost distribution of building a merchant ship, Available from Stopford (1997)

As it can be seen from the Figure 1, among all the materials steel covers the majority of cost

distribution.

For better understanding the economics of shipbuilding, the stages of production process

should be briefly described. Stopford (1997) defines the process under nine stages. Figure 2

shows the stages.

Figure 2: Stages of shipbuilding process

1. Designing and estimating

2. The steel stockyard

3. Steel shot blast plant

4. Plane and stiffener preparation

5. Assembly

6. Pre-outfitting

7. Coating

8. Assembly on berth

9. Outfit and outfit quay

P 12 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

In the first stage, design and production planning are developed gradually starting from a

general point of view to a detailed condition. Production drawings and parts lists are prepared.

Required materials are identified and ordered. It should be noted that it is an essential stage

and proper planning may dramatically increase the productivity of the shipyard.

Second stage covers the actions taking place in a steel stockyard. After the arrival of ordered

steel plates, they are stored. As it is stated earlier, steel is a vast cost in shipbuilding and great

amount of steel is stored and processed throughout the process. Therefore, it is crucial to

properly plan the storage process to reduce costs.

Steel plates and sections are processed, shot blasted and primed in the third stage. This stage

is followed by plate and stiffener preparation. Plates are cut to obtain to required size. They

are prepared for welding. In the next stage, prepared steel plates, framing members are

assembled into blocks.

The hull is fitted with several materials as well such as pipes, cables, machinery etc. These

fittings are done during assembly stages. The key point is completing outfitting as much as

possible in earlier stages of production. Coating is carried out in the late stage of production.

Parts that are already built are gathered in the dock, aligned and welded. Finally, the outfitting

is completed.

The stages that are briefly described above clearly show that shipbuilding is a sophisticated

process. Every stage of production required unique attention and proper planning in order to

accomplish desired goals in pre-defined dates.

Stopford (1997) also underlines the fact that competitiveness of a shipyard in the market

regarding pricing depends on six key variables which are material supply, facilities, skilled

labour, wages, labour productivity and exchange rates. Also in some cases subsidy may also

affect the ship production. These factors determine the number of ships that are produced,

their prices and the income of shipbuilder.

Despite the fact that facilities affect the production of ships, the performance and output of a

shipyard is dramatically affected by the “productivity” of the shipyard. Since shipbuilding is a

complex process proper management, planning and organization are key factors defining the

efficiency and performance of the shipyard. The term “productivity” will be described in

more details in the next section.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 13

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

1.3. Global Shipbuilding Market

In recent years, despite the effect of global economic crisis, shipbuilding industry grew

rapidly and competition became tougher. Figure 3 shows the new orders for ships in the world

in million gross tonnages with respect to years between 1975 and 2014 (Shipbuilding

Statistics, 2015). It can be seen that with newly participating and growing actors in industry

such as China and South Korea, the competition is increasing.

Figure 3: World new orders of merchant ships with 100 Gross Tonnage and over between the years

1975 and 2014, Available from Shipbuilding Statistics, 2015

Before further discussion and evaluation of global market leaders, “productivity” should be

briefly defined. Productivity is generally used as efficiency as well. Gebhart and Jarvis (2003)

state that in shipbuilding point of view, productivity is generally defined as man-hours per ton

for steel work or man-hours per compensated gross ton (CGT) for whole ship. In addition,

competitiveness of a shipyard is often measured with total cost per CGT. CGT is a term used

to define the amount of work that is required to build a ship. It is calculated by multiplying

tonnage of ship with a certain coefficient which is dependent on type and size of the

corresponding ship.

P 14 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

In present day, South Korea, Japan and China are competing for the biggest share from the

global merchant ship building market. Korea offers modern facilities and low labour costs,

while Japan is still leading in the field of productivity. Park et al (2006) states the fact that

when Japan is set to be the baseline for productivity as 1.0, Korea is 0.7. It can be further

described with delivery lead-time averages. In Japan, it takes 400,000 to 600,000 man-hours

and 6-8 months while in Korea it takes 500,000 to 700,000 man-hours and 7-11 months to

build a large, double-hull crude oil carrier.

Koenig et al (2003) also shares similar information with the addition of China and Western

Europe into the comparison. Table 1 below shows evaluation of competitiveness factors such

as productivity, labour cost and delivery time in Japan, South Korea, China and Western

Europe.

Table 1: Competitiveness factors in countries

 Japan S. Korea China W. Europe

Productivity 1.0 0.7 0.2 0.6

Labour cost 1.0 0.5 0.2 0.8 - 1.2

Delivery time shortest
longer than

Japan

much longer

than Japan

slightly

longer than

Japan

From the statistics and information given above, it can be said that productivity is a key factor

to be able to survive and compete in global shipbuilding market. Japan has more labour cost

than its competitors, but still manages to lead the market with its high productivity profile. On

the other hand, China rises with its low labour cost. Therefore, several approaches and

activities are tried to be carried out in order to increase the efficiencies shipyard facilities.

It can be clearly seen that concept of lean manufacturing is becoming more important in

shipbuilding industry in recent years. Lowering the costs of production and increasing the

efficiency of production process is the key to hold a strong position in a highly competitive

global market. With China rising with low labour costs, it is becoming crucial for other actors

in industry to improve their productivity levels with using state-of-the-art facilities and proper

planning and organization.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 15

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

The concept of lean manufacturing and its applications in shipbuilding industry are described

in the “State of the art” section in details. Use of simulation and optimization approaches will

also be discussed under the same section with examples of applications done so far. It is

proper to say that applications in these fields of knowledge are getting wider and wider in the

industry with the help of developing technologies and software.

1.4. State of the art

1.4.1. Lean manufacturing in ship building

Before going through lean production in shipbuilding, the concept should be clarified. Lean

manufacturing is also known as lean production or referred as “lean” in most cases. It can be

briefly described as a systematic approach towards eliminating waste in a manufacturing

process. It should be noted that the principles are firstly introduced by Toyota. Toyota

developed a system, which is referred as Toyota Production System in order to become

competitive in the market. It is clearly the reason behind the current success of Toyota and

proves that applying lean approach results in significant improvements.

Waste, in the sense of lean manufacturing, is defined as any action or process that does not

add any value to the product from the point of view of customer. The main idea is improving

efficiency, productivity and profits by reducing wastes.

There are seven major wastes, which are also addressed as “Seven Deadly Wastes” in lean

approach. The wastes and their brief explanations are given in Table 2 below.

Table 2: 7 major wastes in lean point of view

Waste Explanation

Overproduction Producing an item when it is not necessary

Waiting Time spent by an item while waiting for the next value-adding production step

Transport Unnecessary movements of materials and items

Motion Unnecessary movement of people

Over processing Processing more than customer requirements

Inventory Excessive items or process that are not needed currently

Defects Final goods that are useless or requiring rework

P 16 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

The goal of any producer should be reducing the major wastes that are stated above. Lean

approaches and tools are used in several industries that are mainly based on mass production.

However, the applications are also seen in shipbuilding industry as well. It can be said that it

is getting more and more popular in recent years due to the severe competition in industry.

Japan and South Korea made great leap and ensured their leading position in the global

market. Several articles are published regarding the subject in the recent years that show the

trend of industry. It is fair to suggest that lean manufacturing will be used much more in

coming years.

Kolic et al (2013) published a scientific paper on the subject of lean manufacturing

methodology for shipyards. It is stated that in recent years, parallel with improving

manufacturing technologies, shipyards also made improvement in technologies. However,

they could not succeed and reach a competitive level as some major shipyards like

Ishiwajima-Harima Heavy Industries or Kawasaki in Japan. The reason behind this reality is

lack of applying lean methodological changes in production processes. In most facilities,

concepts such as group technology or design for production are neglected. It is suggested in

the article that applying some lean tools will significantly reduce man-hours. In order to

support the idea, a case study was carried out for a panel-block assembly process. The case

study covers integration of one piece flow principle and levelled production. In the later stage

of the study, Monte-Carlo methodology, which is also used by the DES methodology that is

applied in our work, is used for man-hour estimation and reducing the risk in decision

making.

Lang et al (2001) suggested that applying lean manufacturing might improve a shipyard and

give a competitive advantage in the market. They conducted a case study in hypothetical

shipyard. The work covers the estimation of current performance of the shipyard, study and

search for lean application opportunities in shipbuilding. Authors state the fact that

shipbuilding process is not like other industries due to the fact that a ship cannot be built

entirely on an assembly line and ships are generally produced in fewer numbers. Still it is

possible to identify the wastes and eliminate them. Some identified wastes are excessive

inventory, excessive waiting time and excess motion of materials which are also the subject of

our work. Reducing these wastes is believed to be significantly effective in increasing the

efficiency of the production process. A new shipyard layout is suggested with a straight-line

flow. Later the flow is evaluated in every possible point of view with their relationships with

other steps of production. A new purchasing approach with the aim of achieving Just In Time

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 17

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

(JIT) principle is also implemented. The results prove that productivity is significantly

improved with lean manufacturing developments.

Liker and Lamb (2002) also underline the success of Toyota Production System and suggests

that it pioneered several approaches like just in time and one-piece flow. It can also be

accepted as the basis of lean manufacturing. The purpose of the article is to present a

guideline for lean applications in shipbuilding. The paper is really helpful for understanding

the basics of lean manufacturing, the concept of waste and how it can be recognized. Toyota

Production System is further discussed in details based on examples from shipbuilding

process. Firstly, JIT is evaluated. Since it works best with a one-piece flow, it is an approach

that is applicable mainly in mass production. However, it is stated that some leading shipyards

in Japan managed to implement it in ship construction. Obtaining stability in shipyard

processes is also discussed in the article. Lean approaches are offered as solution to increase

lacking stability in a shipyard such standardizing the work or possessing an efficient

workplace layout. Having a proper supply chain is also underlined as a key factor affecting

the performance of the shipyard as having an excess amount of materials waiting to be

processed or lacking the required amount of material directly result in problem in the

workflow.

Phogat (2013) suggests that applicability of lean principles is limited due to the nature of ship

production. However, it also states that, especially Japanese shipyards that managed to

implement lean principles to shipbuilding improved their productivity dramatically, 150% in

30 years from 1965 to 1995. Also in case of applying lean manufacturing in shipbuilding, the

productivity could improve around 45% and building time 85%. Information related with lean

applications and trends in Norway and United States is also given. It can be clearly seen that

lean manufacturing applications are getting more important and it is a trending field of work

in recent years due to the fact that lean production is considered to be key to become

competitive in the market.

Literature search in the field of lean manufacturing in shipbuilding industry showed that in the

recent years lean applications are becoming widely used. In addition, the sources were helpful

to identify the wastes that are needed to be improved in a shipyard. The design variables and

objective functions are defined based on the knowledge and point of view that is gained

through the articles.

P 18 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

1.4.2. Simulation in shipbuilding

Simulation is a common tool that is used for process planning in several industries. It enables

us to define and evaluate various alternatives before actually setting up the system. The use of

simulation is getting popular in shipbuilding industry as well in recent years. However,

despite the fact that it is becoming widely used nowadays, it should be noted that currently the

applications are limited especially compared to other industries such as automotive which is a

pioneer industry in most of the technological advances.

The concept of Discrete Event Simulation (DES) will be described in details in the related

section. Nevertheless, before further discussion of this document, it is necessary to give a

brief description. In general sense, simulation is the imitation of a real-life process by

developing a model. The key characteristics of the system and flow of operations are

represented in the simulation. DES is a type of simulation in which the operation is modelled

as discrete sequence of events. Each step occurs at an instant of time and causes a change in

system. It is assumed that no change takes place between two consecutive events. Since a

DES tool is used in our work, current applications in the industry are investigated regarding

simulation and DES.

Cha and Roh (2010) states that recently simulation is becoming a more common tool in

shipbuilding industry with the purpose of planning the processes. Shipyards develop in-house

systems or use commercial tools for simulation. Both cases have some disadvantages.

Developing an in-house tool requires time and effort while commercial tools lack adaptability

to requirements of shipbuilding process. Authors propose a simulation framework by

combining discrete event and discrete time simulation. A sample case is selected which is

block erection process for applying the simulation framework and evaluating. In the article by

Cha, Roh and Lee (2010) the case is described in a more detailed way.

Fernandez and Alonso (2015) underlines the fact that as a consequence of increasing use of

CAD systems in the fields design and production virtual reality is becoming more applicable.

Recent developments in hardware and software result in ability to process huge amount of

data such as complex ship models. Therefore applications in shipbuilding increase like several

industries. Different areas of usage of virtual reality are described in the article. Besides these

information, a new virtual reality and design review tool, FVIEWER developed by SENER is

described. The features and advantages of the software are explained within the context.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 19

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Despite the fact that simulation is not the main objective of our work, it is important to see the

state-of-the-art of the shipbuilding industry. It can be said that simulation is a powerful tool

for making proper process planning because of the fact that it saves time and reduces the

mistakes that might be done while setting up a production layout.

1.4.3. Optimization in ship building

Optimization will be explained in details in the related section. However, in a brief way, it can

be defined as finding the best alternative among possible alternatives based on some criteria

in a systematic way. It is another concept that is important in shipbuilding as well.

Throughout the design of a ship, there are several goals that are desired to be achieved such as

reducing the resistance of the hull, reducing the weight or obtaining the best performance.

Designers and engineers work on several alternatives and try to find the best possible

outcome. Optimization is also crucial during the production process as well. Reducing the

cost and minimizing the time of construction are some of the important key parameters that

affect the competitiveness of a shipyard. It can be considered as a tool for achieving lean

manufacturing goals that are already mentioned before. It can be said that optimization of

shipbuilding process is a subject that is rising in the industry in recent years as well.

Park et al (2006) present a case in their article, an academy-industry collaboration project on

improving productivity in steel stockyard management in South Korean Hyundai Heavy

Industries (HHI) shipyard. HHI is stated to require productivity improvement due to

increasing competition in the industry amongst Japan and China. Within the context of the

work, ways of improving stockyard operations are researched, current situation of stockyard

is evaluated and operational difficulties are assessed. A simulator is also developed due to the

fact that currently decision making process is dependent on the experience of the manager.

The importance of steel stockyard is emphasized by Park et al (2006). It is explained that so

far, stockyard operations are neglected. However, it has interaction with other departments

and therefore directly affects the whole process and any problem occurring in stockyard

directly causes consequences in other operations. After realization of the importance of steel

stockyard management, Hyundai launched a project called Hyundai steel stockyard

optimization project (HYSSOP) to search for approaches to improve. Initially the steel

P 20 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

stockyard process is described in the paper. Later two difficulties are addressed related with

the operations which are long stay of steel plates and stock management method. The reasons

for these difficulties are mainly great variety of steel plate delivery times and slight

construction schedule changes which directly affect the stock time of plates. In HHI, the

stockyard operations are controlled by an operations manager and the decision making

process relies on experience mainly. HYSSOP developed a simulator to assist the process.

The simulator takes into account current schedules, workloads, materials and schedule

changes. The main aim of the shipyard is minimizing the long stay of materials. It is also

stated that currently some Japanese shipyards reduced this duration to 3-4 days by supplying

steel plates to the shipyard from stockyard in a JIT manner.

Caprace et al (2013) initially state the importance of space within a shipyard since space is

generally considered as a resource and requires proper planning. It is stated that ship

production is a highly complex process and includes several disciplines and operations that

should be carried out simultaneously. Therefore, production planning is a key point. However

planning is generally dependent on personal experience and ideas.

After presenting the current condition of industry in the related field, Caprace et al (2013)

introduces a tool that may assist planners to use valuable space in an effective and efficient

way. Space allocation is an important issue. It is a dynamic process and it is defined as a time

consuming and difficult task to accomplish since space allocation for one block directly

affects other blocks and other operations. Some changes or delays in schedule may also occur

and quick response is required in such cases. Thus, a tool is necessary to assist planners to

adjust the production to the current case. It is also asserted that shipbuilding has different

characteristics and relatively more complex from the point of view of certain approaches such

as three-dimensional bin packing problem (3D-BBP). It is time consuming to find optimum

solutions with current approaches; therefore, a new tool is developed. An optimization task is

carried out by defining design variables and objective functions. The problem is

mathematically modelled and algorithm is developed. Later a case study is done.

In the article by Caprace et al (2013) the objective defined by the shipyard is maximizing the

number of blocks produced in a given surface in a certain amount of time. This objective is

referred as Space and Time Allocation (STA) in the article.

Article of Bair et al (2006), proposes an approach that integrates simulation and optimization.

A shipbuilding workshop is simulated initially and then productivity is improved by using

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 21

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

optimization. For the optimization, genetic algorithm is used. As a concept that is also crucial

in our work, it will be described in details in the relevant section. The article suggests

promising results for further applications of coupling simulation and optimization tools. The

objective stated in the article is minimizing the total production time. Despite the fact that it is

not directly mentioned as a lean manufacturing approach, minimizing the wastes such as

waiting plays a crucial part in optimization process while finding best solution for layout

arrangement.

The articles mentioned are core of the work that is done. The current state-of-the-art of the

shipbuilding industry shows that lean production, simulation and optimization concepts are

becoming important and several applications are already present. It is also clear that these

approaches directly yield improvements in production process and create great impact on

productivity of shipyards.

1.5. Gap

Lean manufacturing is a relatively new subject for shipbuilding industry compared to others

such as automotive. This situation is mainly resulted from the fact that shipbuilding is a

relatively complex process that covers different disciplines. In addition, automation is not

applicable for shipbuilding due to the fact that ships are not produced as mass production

generally and construction may not be done in a sense of line production unlike a car.

Similar to lean manufacturing, simulation and optimization are also newly rising subjects in

shipbuilding industry. The reasons behind this fact may be justified with the difficulties of

applying these approaches. It can be stated that coupling these two concepts is rather difficult

when the stochastic nature of the simulation is considered. It is not easy to obtain convergence

in simulation. In addition to that, running an optimization task based on a stochastic

simulation requires great amount of sophisticated work, computation capacity and time.

Furthermore when the objective of the study is developing any layout, parametric simulations

are required which enables to generate dynamically new layouts. Therefore, despite the

advantages offered, it is clear that difficult nature of DES optimization is the main reason

behind the gap in the industry.

P 22 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

However, it can be understood from the literature search and state-of-the-art of the industry

that concept of lean manufacturing besides simulation and optimization raised the interest of

shipbuilding industry as well and applications are increasing in the recent years. It is clear that

simulation and optimization are powerful tools to improve productivity in a shipyard. These

approaches are required to possess a sustainable and competitive position in the market.

Our work proposes a relatively new approach. It is seen that simulation and optimization are

being used in the shipbuilding industry. There are several examples that are already

mentioned in the previous section. However, simulation and optimization tools are not

integrated for a shipbuilding process, except one example. Bair et al (2015) proposes a similar

approach and yields promising results, which prove that coupling these two approaches

results in more efficient and effective results.

The thesis also brings another type of application unlikely what is presented by Bair et al

(2015). Within the context of the thesis, two commercial tools are used. By using already

existing commercial software, great amount of time and effort is saved. As it is seen in several

examples, generally in-house developed systems are used for required tasks. It is fair to say

that developing new software to solve some unique problems is a necessity in some cases

since commercial tools may not fulfil the requirements of shipbuilding processes. However, it

results in consumption of long time and high costs. Therefore, using commercial software to

model, simulate and optimize some tasks is a far more efficient solution.

To sum up, the thesis focuses on coupling two commercial software, QUEST for simulation

and MODEFRONTIER for optimization, in order to solve real-time engineering problem and

optimize a steel stockyard of a shipyard.

1.6. Objective

The main objective of the thesis is to offer a new approach of applying simulation and

optimization concepts for improving the efficiency in a shipbuilding process. Despite the fact

that both concepts are becoming popular in recent years, integration is still not prevalent.

Another goal of the thesis is to optimize a steel stockyard in a shipyard, which is based on a

real layout. The shipyard that is the subject of the application is Atlantico Sul which is a

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 23

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Brazilian company. The facilities were already modelled and based on what is already done,

steel stockyard operations are simulated.

The simulation is coupled with an optimization tool in order to carry out further tasks.

A multi-objective optimization is set up to minimize the area required and minimize the Work

In Progress (WIP). Thus, the cost will be minimized.

Optimization steps are repeated with certain modifications in simulation as well in order to

find optimum solutions for shipyards with different capacities of steel processing.

The thesis has the purpose to improve what has already been done in this field, present a new

approach with correlated use of two commercial tools and hopefully be a basis for further

works and developments.

P 24 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

2. METHODOLOGY

2.1. Steel Stockyard and Activities

Steel stockyards are generally ignored while planning the shipbuilding process. Most of the

time managers or planners do not pay attention to operations taking place in a stockyard and

mainly focus on other operations such as part fabrication or assembly with the aim of

improving productivity. However, it should be stated that steel stockyard planning and

performance directly affect other stages of production and activities of several departments of

shipyard as purchasing, manufacturing or even design. A delay in feeding the latter stages of

steel processing may cause severe problems eventually leading to loss of time and money.

Whereas excess amount of steel waiting in a stockyard for further process is another problem

and causes loss of productivity from lean point of view (WIP). Therefore, steel stockyard

planning and management requires attention and proper planning just like any other process

taking place in a shipyard.

Briefly, steel stockyard may be described as the place where all steel materials arrive initially.

Later the steel plates are arranged, put into an order and stored until further steps of

production based on a plan.Then they are transported for further steel fabrication processes.

The subject of the thesis is the steel stockyard of Atlantico Sul. Atlantico Sul is a shipyard

which is placed in city of Ipojuca, in the state of Pernambuco, Northeast of Brazil. It has the

capacity of processing 160.000 tons of steel per year. The shipyard is based on 1.62 million

m
2
 area and covers all necessary facilities to construct and repair ships and offshore

platforms. Figure 4 shows the layout of the whole shipyard.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 25

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Figure 4: Atlantico Sul shipyard layout, Available from, www.estaleiroatlanticosul.com.br

As it is already stated, optimization is done in steel stockyard.

It can be seen from the Figure 4 that stockyard is open and has three sections which are

identified as A, B and C from right to left. Sections A and B are slightly bigger than C.

Sections A and B consist of 26 rows of lots each, while section C has 21 rows of lots. In each

row, there are 3 lots. The term “lot” is used for the place to store steel plates as grouped based

on certain parameters, which are dimensions, thickness and steel grade.

Each section has a crane. These cranes are used for moving steel plates arriving initially as a

pile to the corresponding lot. Same cranes are also used for transporting plates that are placed

in lots based on the requirement of steel processing stage where they will be shot blasted,

primed, cut and shaped in later stages of production.

The arriving steel plates are determined based on the design of the ship. Production plan is

prepared and based on that purchasing is done. During the purchasing, delivery lead-time

should be taken into consideration. The steel plates are purchased from a variety of suppliers

and in each case proper planning should be done. While making the purchase, several factors

are taken into account such as amount of steel that is already stocked in the shipyard or

http://www.estaleiroatlanticosul.com.br/

P 26 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

progress in production stage. The ordered steel plates arrive to the stockyard and stocked for

latter stages. Finally, they are transported according to the production plan.

Several steel plates with different dimensions, thickness and grades are required for building a

ship. Each section of ship requires different qualities and regulations are set by class societies

as well. In our application, steel plates that are required for building a tanker is taken into

account. The list of required steel plates for construction of a tanker is given in Appendix A.

2.2. Simulation

2.2.1. Discrete event simulation

Creating a simulation before actually trying several design alternatives enables to obtain

results related with process planning in a shorter period. In addition, it assists planners to act

quickly to sudden changes in system or any problem.

Discrete Event Simulation (DES) is an approach in the field of simulation. Fishman (2001)

states that unlike a continuous process that evolves through time, events that are simulated are

assumed to be taking place step by step. Each event occurs at an instant of time and causes a

change in the system. It can be said that simulation jumps from one event to the next without

any change of state in the system between two events.

DES is applicable in shipbuilding process like many other production processes. From the

operations in a steel stockyard to assembly of blocks, each stage of production can be

described as events taking place step by step without any change between stages occurring.

There are some examples with DES applications in shipbuilding and it is clearly a valid

approach to simulate shipbuilding with DES.

DES offers some important advantages as well. One of the most important aspects of DES is

that it enables the use of stochastic modelling. Concept of stochastic simulation is also

introduced in the title of the thesis. Thus, it should be explained in order to properly explain

the advantage of using it.

A stochastic simulation is a type of simulation that takes into account the random change of

variables with certain probability distribution. The simulation is repeated until sufficient data

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 27

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

is gathered. Finally, the distribution of the outputs is obtained and the most possible outcome

can be seen and evaluated from the results. For all production processes, the factors such as

human or equipment cause some uncertainty which result in a probability distribution of

variables. Therefore, it is beneficial to run stochastic simulation in order to reach precise

results.

Despite the fact that DES is used in the thesis, it is important to note that simulation is not

stochastic. Due to the limited time of work, simulation is based on constant values in

variables such as crane and conveyor speeds. However, the simulation is useful and open for

further developments and turning it into a stochastic simulation might be the next future step

to improve the work that is presented.

Besides being a stochastic simulation, DES has some other advantages. The results are useful

to identify any bottlenecks in the process and it is easy to apply several approaches in order to

obtain best results.

2.2.2. Software, basic elements and modelling

The software used for creating DES is QUEST that is developed by Dassault systems. It is a

tool that enables 3D modelling of a production environment, simulation and analysing of the

flow. It is flexible and thus it is applicable in shipbuilding process as well. It also offers

visualization of the model, which is beneficial while modelling and analysing the results.

Another advantage of QUEST is that it is capable of exporting and importing data from other

sources. It enables coupling with other tools. It is crucial in the thesis since main goal is to

couple QUEST with an optimization tool to run the trials.

Before further describing how the simulation is made and introducing several assumptions

and approximations, it is necessary to briefly inform how the model is prepared in QUEST.

QUEST has a user-friendly interface to create and define every single detail of production

process. It is also capable of running in batch code mode which saves time but requires more

knowledge and experience.

In QUEST, parts are the entities that move through the system. In our case, parts are steel

plates. To simulate the process, those parts should be created, carried and undergo processing.

P 28 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Therefore, some basic elements are needed to be created as well. The elements are also shown

in Figure 5 below.

Source is the element that is needed to create parts. It is shown with 1 in Figure 5. A source is

defined for the arrival of new steel plates to the shipyard with a defined frequency.

Second step is to define buffers, which are lots, where the parts are stored and wait for the

next move. Buffers are represented with 2 in figure. The steel plates initially arriving

randomly to shipyard are stored as piles in lots before they are moved for further processing

based on the request from the processing unit. Therefore, buffers are created based on the

model under three sections. Also an additional initial buffer is defined to hold the steel plates

created in the source and transfer the held steel plates once a week to the main buffers in each

section.

In our case, we are not considering any process related with steel plates. Only the storage and

transportation from initial arrival to the machine is simulated. Therefore, instead of a

machine, a sink is defined in the model. Sink is an element in software, where the parts leave

the system which can be also stated as “destroyed”. Sink has no output. It is placed in the

building shown with 3 in Figure 5.

Cranes are needed to move plates from their initial position, source, to storage units, buffers,

and from buffers to conveyors. Therefore, they are created in QUEST as well. In our case,

cranes have hoists. Cranes are not represented in the simulation. However the hoists are seen

and numbered with 4 in the figure.

Finally, three conveyors are created to move plates to the sink. Cranes transfer plates from

buffers to conveyors. To accomplish this move, decision points are defined on conveyors as

well. Each section has its own conveyor and it can be seen from the figure numbered as 5.

2.2.3. Simulation

The process taking place in the steel stockyard is modelled in QUEST. The model obtained is

presented below in Figure 5. Further explanations regarding how the events take place and the

sequence are given below as well. Also some approximations and assumptions that are made

while simulating the system are also explained.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 29

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Figure 5: Steel stockyard model in QUEST

Process begins with the creation of steel plates in the source. Created plates arrive to an initial

buffer where they are transferred into the main buffers in each section equally. Each week, the

plates that are waiting in the initial buffer are transferred to the active sections. This process is

modelled in this way due to the fact that number of arriving plates to the shipyard in a week is

selected as a design variable. The selection of the design variable and how it is implemented

to MODEFRONTIER will be explained in the next sections. However, it should be noted that

the frequency of arrival of steel plates is assumed to be continuous and constant. An initial

buffer is created in the system. Thus plates are not transferred continuously to the lots.

Instead, they are stored initially in the main buffers in each section. Every week the stored

plates are moved to lots. This way, the reality is implemented in simulation modelling the

arrival of a steel plate pile each week with the defined fraction of plates within. This is an

assumption since in reality, steel plates are purchased from a variety of suppliers and the

arrival interval is not constant.

In order to solve the problem that rises due to the fact that one week of waiting time is

required to have distributed steel plates in the sections, an initial stock is defined in the main

buffer with the number of steel plates that will be gathered within a week. This pile has the

same fraction of steel plate types and is randomly sorted as well.

P 30 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

As it is stated the number of steel plates in a pile arriving to the stockyard is defined as a

design variable, therefore it changes throughout the optimization process to obtain best

outcome. It will be explained in the related section in details.

The distribution of steel plates with respect to the dimensions, thickness and grade is always

the same. It should be noted that steel plate information is taken based on real data of required

steel for building a tanker. However, the number of different steel plate types is narrowed

down to 10 from a value of almost 150. Therefore, most frequent 10 types are taken into

consideration while defining fractions and distribution of each one. Ones that have more than

1% as number of plates in overall distribution are taken for further progress. Different types

of steel plates regarding their dimensions, thickness and grade which are presented in the

table below.

Table 3: Thickness, dimension and weight values of steel plates that are used in simulation

Plate dimensions (mm)
Quantity Weight (tonnes)

Weight

percentage

Number of

plate

percentage Thickness Width Length

Steel grade A

11,0 2440 9200 224 434,198 9,037 12,037

12,0 2200 9200 223 425,174 8,849 11,983

12,0 2440 9200 163 344,680 7,174 8,759

12,5 2440 9200 190 418,515 8,711 10,210

13,0 2750 9200 120 309,823 6,448 6,448

14,0 2440 9200 206 514,729 10,713 11,069

15,0 2750 9200 144 428,987 8,929 7,738

Steel grade AH36

15,0 2750 9200 170 512,401 10,665 9,135

16,0 2750 9200 158 502,074 10,450 8,490

17,5 2750 9200 263 914,080 19,025 14,132

 1861 4804,661 100,000 100,000

This is also another assumption made in simulation. In real life, it is impossible to group only

steel plates with same dimension, thickness and grade due to the fact that as stated almost 150

different combinations of these values exist in steel plate list which is given in Appendix A.

However, piling/unpiling operation is not integrated to the model yet. Piling/unpiling

operation enables the cranes to reach to the steel plate that is stored not on the top of the pile.

It is a function that replaces plates to another empty lot and reaches to the requested one. In

case the plate requested is beneath several other plates, crane relocates plates on top to

another empty lot and feeds the conveyor with the requested plate. As it is stated, this

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 31

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

operation is not implemented yet. This fact is believed to cause problems in the working of

simulation. Therefore, in order to prevent any crashes in the system, number of plate types are

reduced to 10 and same type of plates are stored in the same lot. Thus, any crash in the

simulation is prevented.

After one week is completed in the simulation, the pile formed in the initial buffer is

separated into three sections that can be seen from figure 5 as well. It should be noted that, in

some iterations that will be conducted with MODEFRONTIER, some sections will be

completely deactivated. Thus, it will be possible to see whether more efficient results can be

obtained when one or two of the sections are not used for storage at all. In these cases, pile of

arriving steel plates will be divided into only active section or sections.

Consequently, cranes in each section begin to place steel plates in storage lots based on their

types. There is one crane in each section working to place plates from the pile to the lots and

from lots to the conveyor. As mentioned before plates will be grouped based on their type

which is in our case 10 different types. Each plate will be taken and put by the cranes to the

respective lot. The maximum number of steel plates in a lot is also set as a design variable

since it directly affects the storage area and Work In Progress (WIP).

Meanwhile, steel plates are requested for further progress and same cranes place requested

steel plates to the conveyor for transportation. The request is continuous and distribution of

requested plates is same with the distribution of arriving plates, which is the required plates

for building a tanker. It should be noted that the request is continuous unlike the arrival of

new piles. Another assumption made is that request is random. In a real case, the request is

defined based on the production plan and it is known that which dimension, grade and

thickness of steel plate are required for the next step of production. Furthermore, the purchase

and arrival of new plates are planned according to this plan. However, in order to simplify the

case, it is assumed that the request is constant and fraction of requested steel plates is the

same with the fraction of steel plates arriving to the stockyard.

For better explaining the process, push and pull systems should be explained clearly. In

QUEST, the flow of materials is defined with two options, either as pull or push. In our

simulation, both are used. As it can be seen, arrival of steel plates to the shipyard is modelled

as push in the system. Plates are created and transferred to initial buffers with push. Also they

are placed in the lots that they are stored before further processing with push as well. Plates

keep on arriving and being stored not depending on any request from the sink. On the other

P 32 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

hand, request of plates for further processing, which is modelled as request of sink in the

simulation, is a process defined as pull in the system. The request is defined with a certain

frequency.

The process can be briefly summarized and shown with the Figure 6.

Figure 6: Stockyard operations flowchart

The simulation is set to be 1 month. This may also be stated as an assumption. Normally, it

would be better to have a simulation for a longer period. However, due to the fact that longer

simulation will result in longer computation time and we have limited time to perform several

runs, the duration is set to be relatively short. In addition, it is clear that without having piling

and unpiling function in the simulation, the simulation would crash in a long time interval

definitely. Therefore, despite the fact that having a 1 month simulation time affects the

outcomes of the optimization the time is set to be 1 month. In case of having a stochastic

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 33

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

simulation, this assumption would result in more severe problems due to the warm-up time of

the simulation having more effect on the outcomes. Finally, it is assumed that 1 month of

simulation time is efficient and would be enough to evaluate WIP and storage area. It can be

further noted that, for future development of the work, having a simulation time of at least 1

year will give clearly better and more valid results.

As it is mentioned, it should be also reminded that there is no stochastic simulation taking

place and all the values are constant due to the limited time to prepare simulation and carry

out optimization. This fact affects the results dramatically since in reality it is not possible to

assure that all activities occur without any change throughout the whole process. In order to

have a simulation to identify and investigate entire process, it is crucial to have stochastic

simulation with distributions. In this stage of work, the main objective is to have a working

coupling of simulation and optimization. Thus it is assumed that the results that are obtained

are relatively acceptable and give valid idea related with the subject. However, it is an

important point to improve for further work which will be discussed later.

The process taking place described above is modelled in QUEST and then linked with

MODEFRONTIER for optimization. The simulation is not run every time with graphics

interface to save time. Instead, it is run in batch mode offered by software which enables user

to obtain results faster. The codes that are essential and used in correlation with

MODEFRONTIER will be described in “Coupling and Set Up” section and presented as

appendices.

2.3. Optimization

2.3.1. Multi-objective optimization and genetic algorithm

As it is briefly explained before, optimization in mathematics is selection of best alternative

based on pre-defined criteria among possible alternatives with a systematic approach. In real

life engineering problems, in most cases there are more than one objective that is needed to be

optimized. Those objectives are contradicting in most cases as well. Such applications, in

which there is more than one objective defined, are called multi-objective optimization.

P 34 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

As it is already stated, contradicting objectives cause the result that each objective cannot be

evaluated separately. Therefore, a different approach is required and all objectives are

evaluated together.

In their paper, Konak, Coit and Smith (2006) state that there are two general approaches for

multi-objective optimization. The first one is turning multi-objective task into single-objective

with the help of methods such as weighted sum or utility theory. However, in application, it is

difficult to define the importance and weights of each objective. Therefore, second approach

is more common. In this approach, a set of Pareto solutions are obtained. Having several

solutions help decision makers to see possible alternatives and make better calls by making

trade-offs among possibilities. Figure 7 taken from the progress report by Justesen (2009)

shows the multi-objective optimization process.

Figure 7: Multi-objective optimization process, Available from Justesen, 2009

MODEFRONTIER tool is used for running optimization tasks. The information regarding

software will be presented in the next section. However, it should be noted that it enables user

to create optimization set-up without deep investigation of mathematical formulation of

optimization. Still it is important to understand the logic of multi-objective optimization and

the concept of genetic algorithm since Multi-Objective Genetic Algorithm (MOGA) is used

for optimization within the context of thesis.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 35

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

As it is understood from the title of the subject, multi-objective optimization deals with

several functions that are needed to be optimized, which means minimized or maximized.

Justesen (2009) briefly explains the mathematical description of the multi-objective

optimization.

Let x be the solution that the functions are going to be optimized. In this case, x is a vector of

decision variables which can be shown as in Equation 1

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 (1)

where xi is bounded by lower and upper bounds which are xiL and xiU. Boundaries define the

decision variable space (D). Objective functions can be denoted as fm(x) define a space (M)

and creates a link from D to objective space (Z). The link is presented in Figure 8.

Figure 8: Decision and objective spaces, Available from Justesen, 2009

There may be several constraints. Solutions satisfying the constraints are addressed as feasible

while others are unfeasible. The equations given below simply introduce the mathematical

representation of a multi-objective optimization.

𝑓𝑚(𝑥), 𝑚 = 1,2, … , 𝑀 (2)

𝑔𝑗(𝑥) ≥ 0 , 𝑗 = 1,2, … , 𝐽 (3)

ℎ𝑘(𝑥) = 0 , 𝑘 = 1,2, … , 𝐾 (4)

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈 , 𝑖 = 1,2, … , 𝑁 (5)

P 36 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

In the equations given above, M in Equation 2 corresponds to objective functions whereas J

and K, shown in equations 4 and 5 respectively are constraints and N is space of decision

variables.

As it seen in Figure 8, we are interested in all feasible solutions in a Pareto-optimal set instead

of domination of a certain function.

Using genetic algorithm (GA), which is also known as evolutionary algorithm is an approach

applicable for multi-objective optimization. MODEFRONTIER offers simple use of the

approach by its user-friendly interface and simple running. Still, it is significant to understand

the concept of GA to understand how the procedure occurs through the software.

GAs are algorithms that are based on up the main idea of Darwin’s theory of evolution which

is simply fittest one survives. Therefore, in application, solutions are referred as individuals

among a population. Fitness of these individuals is evaluated based on how good is the

solution they offer to the problem.

Before explaining the details of working principle of MOGA, a brief history of GA will be

presented as well. Melanie (1996) introduces the history of evolutionary computation in his

book. It is stated that in 1950s and 1960s several scientists studied this concept separately and

considered the idea that evolution might be used an optimization tool for real life engineering

issues. The core idea was evolving a population of possible solutions for a given problem with

an approach inspired by evolutionary theory and its operators such as natural selection.

After contribution of several scientists to the subject throughout years, in 1960s, GAs were

invented by John Holland and developed by him and his colleagues at University of

Michigan. His objective was not to design GA to solve problems but to study adaptation

phenomenon in nature and to search for ways to adapt it to computer systems. His works were

a great leap, had a huge impact on improvement of these applications and became a key point

for developing further. Therefore, it is fair to say that Holland set the foundation of works

based in GAs and the terminology he used is still valid and used. As it was already shared in

“State of the art” section, nowadays GAs are used for optimization tasks in several fields

including shipbuilding as well.

Since MOGA is used in our work, it should be described in details. To start with, the working

principle of MOGA is briefly summarized in Figure 9 below.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 37

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Figure 9: Working principle of MOGA

MODEFRONTIER has MOGA-II present in the software as a possible algorithm. It has four

important operators, which are mutation, selection, elitism and crossover. Algorithm use each

of these operators based on predefined probabilities of occurrence. Operators are needed to be

explained briefly, in order to better understand the working principle of algorithm.

Crossing is the combination of two individuals to create new individuals. Crossover occurs

with a predefined probability in random points. Figure 10 below may be used to better

represent the case and some different approaches while performing crossing.

Figure 10: Crossing

Mutation is the random modification of an individual. It also occurs with a predefined

probability. As it can be seen from Figure 9, it is generally applied after crossing. Figure 11

shows a simple example regarding mutation with a mutation probability of 0.05.

P 38 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Figure 11: Mutation

Whereas selection defines the frequency of a parameter, remain constant without any

alteration throughout the process. Elitism operator maintains good results and ensures that

each new result is as good as the previous one or better than it.

According to Justesen (2009) GA is a stochastic metaheuristic based on probabilistic

operators. Therefore, unlike deterministic operators, each run may result in different

solutions. It also uses a set of solutions which results in combination of several solutions. GA

is a useful approach in multi-objective optimization. It is applicable in high dimensional

objective space cases which means that not linked objectives can be evaluated with a trade-off

among possibilities.

2.3.2. Software

MODEFRONTIER is a tool developed by Esteceo and can be briefly described as a platform

that enables integration of optimization, automation of design processes and analytic decision

making providing coupling with other engineering tools for several various disciplines.

It has a simple interface, which enables users to create optimization loops to solve the

problems. Software includes several single- and multi-objective optimization approaches. The

loop that is set-up for the thesis will be presented in the later sections. A quick review of the

software will be given briefly in this section.

As it is already stated, software has a rather simple graphic interface that enables entering all

related information and coupling with other required software. Graphics interface enables

users to create set-ups as a logical and simple workflow. Simple modules are used to define

input variables, decide algorithm or add constraints in case they are required. Figure 12 below

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 39

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

shows a simple application in MODEFRONTIER with basic modules. It should be noted that

it is an example and it is not the workflow used within the work.

Figure 12: MODEFRONTIER view, Available from http://www.deskeng.com/de/esteco-unveils-

modefrontier-2014/

Use of each module and how they are set up will be described in details in the section

“Coupling and Set-Up”. A brief introduction is sufficient in this stage.

Design variables are defined by using the module “Input Variable” and files that contain

information are linked to the software by using “Input Files”.

Design of experiments (DOE) module is used to decide initial variables that will be used in

the process. There are several options in this case. Throughout the optimization process, new

combinations of design variables will be formed by software based on the algorithm used.

Scheduler module enables to select the algorithm that will be used. Within the context of the

thesis, MOGA-II is selected. DOS Batch script is the key point of the software and can be

identified as the black box that processes inputs into outputs. “Output File” and “Output

http://www.deskeng.com/de/esteco-unveils-modefrontier-2014/
http://www.deskeng.com/de/esteco-unveils-modefrontier-2014/

P 40 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Variable” modules are used to obtain results. Whether minimizing or maximizing is the

objective of the process is defined by “Design Objective”. Any required constraint is defined

by “Constrain” module as well.

As it is stated, mentioned modules will be explained in details about how they are defined and

connected later. It should also be noted that MODEFRONTIER offers tools to see results

clear with graphs and a Pareto diagram may be obtained.

2.3.3. Optimization model

Before further explaining how the optimization set-up is prepared and coupled with QUEST,

the optimization task that is subject of the thesis and how the related parameters are defined

should be described. This section covers the definition of objective functions, design variables

and constraints used in our application.

Design variables and objective functions are presented in Figure 13 with their limits and

constraints stated below them.

Figure 13: Design variables, objective functions and constraints

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 41

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

2.3.3.1. Objective functions

For better understanding the selection of objectives and design variables, it is thought to be

better to start with objective functions. Later, design variables will be explained based on

them.

As it is stated, a multi-objective optimization set-up is prepared for the task. Therefore, two

objectives that are contradicting with each other are needed to be defined to have a valid and

useful Pareto result in the end. The definition of objective functions is done based on the lean

manufacturing principles and ideas derived from the literature search that presented.

The main aim of any optimization in a production facility is to increase productivity and thus

reduce the cost. Therefore, it can be stated that main objective of two objective functions is

reducing cost ultimately.

Two objectives that are defined in the thesis regarding the work are minimizing the Work-In-

Progress (WIP) and minimizing the area of storage. The selection of these objectives is

explained in this section. Their application and representation within the task will be stated in

the section “Coupling and Set-Up”.

WIP

To start with, work-in-progress is a crucial concept. Work-in-progress (WIP), or also known

as work-in-process, is a term used to define partially finished items that are being processed

or just waiting for the next processing stage in a queue or being stored in a buffer. It is taken

into account in a company’s balance sheet. Normally WIP excludes finished goods and raw

materials since they are out of production process. The term WIP is used for steel plates that

are grouped and stored in steel stockyard in our case. Despite the fact that the plates are

currently in the state of raw material, they are considered to be in production level.

Most of the production facilities keep track of WIP throughout whole process. The aim is to

minimize WIP in an optimal case. Just-in-time (JIT) is one of the most well-known

production concepts regarding the minimization of WIP. Briefly, JIT is based on the idea that

the next step of production should be taken into account at each step of production and

defining the sequence of processes regarding this overall view. It aims to equalize demand

from a production process with supply of required items in that stage of production. The main

P 42 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

purpose of JIT is producing perfect quality of exactly demanded goods in the demanded time

without producing wastes.

Minimizing WIP is an essential task in production management. It creates the necessity of

having storage space for the items. It also bounds capital that otherwise may be used for other

investments. Long waiting time may also lead deterioration of goods that are stored and

eventually results in loss of money and serious problems in production.

From lean manufacturing point of view, it is also possible to define wastes that are related

with WIP. It is directly related with waiting and inventory which are 2 of “7 deadly wastes”

that are already described as waiting of an item for the next stage of production and excessive

amount of items that are not need in the present time are clear wastes.

In our case, minimizing WIP is selected as one of the objective functions. Park et al (2006)

also states that long stay of steel plates in a stockyard is a major difficulty to fix. Steel plates

arriving to the shipyard wait for processing and are stocked in steel stockyard which is a

production stage that adds no value to the product. Also purchasing steel plates that will not

be used in a short period is bounding great amount of capital. It also increases the risk that

steel plates get deteriorate which will result in the necessity of further preparation of steel

plates for production stages. Therefore minimizing WIP is selected as an objective function.

A simple approach is followed to estimate and calculate the WIP which is mainly based on

the idea that WIP is integration of weight of the materials that are waiting for the further

processing over the period of time they are stored. A code is implemented to make the

calculation. The code is given as Appendix B.

The working principle of the code can be described as follows. First of all it should be noted

that a “part history” file is obtained from QUEST showing all the activities of parts are shown

such as when they are first created or when they reach and leave the lots.

The code written summons this file for further calculations. Later, simulation time is divided

into 1000 instances which means that samples are gathered for those instances related with

part history. For each instant the weight of steel plates stored in lots are found. Finally, they

are integrated to deliver the result, which is WIP.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 43

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Required area for storage of steel plates

The other design objective is selected to be reducing the required area for storage of steel

plates. As Caprace et al (2013) states, space within a shipyard is an important resource. Use of

space unnecessarily for a process that is not value-adding to the final product may be

considered as a waste of resource. It is also fair to state that using an excess area for storing

steel plates is a loss of money. Reducing the area used for stocking plates will create an area

that can be used for other activities in an already working shipyard. Furthermore, in case of

initial planning and constructing a shipyard facility, less amount of space needed for storage

will result in change and improvement of plans. Proper planning of spaces within a shipyard

is an important task to accomplish. Minimizing the area of storage is directly connected to the

proper use of resources. Therefore, it is selected as the other design objective.

While calculating the area required for storage of steel plates in the stockyard, an

approximation is done. The approximation is that calculation of exact area in meter squares is

not necessary to be evaluated and optimized in our current task. Therefore, instead of

calculating the area, number of active lots is taken as an indicator of the area used for storage.

An excel file is created for activating or deactivating lots based on binary coding. The file is

presented in Appendix C as well. In the excel file, the identities of lots are described with

their sections, rows and columns, which in our application they are being activated as whole

row as well. In the file, “1” stands for active while “0” stands for not active.

It can be said that these two objective functions are contradicting in real cases. Reducing the

area of storage increases the time required to reach for the steel plate located below in a lot

and thus increases WIP. However, since the piling and unpiling operation is not integrated to

the simulation yet, the contradiction of results is not clear unlike reality.

The application of objective functions will be present in “Coupling and set-up section” in

details.

2.3.3.2. Design variables

After deciding for the objective functions, design variables are evaluated among several

possibilities. Finally, three design variables are chosen and selected. These three variables are

P 44 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

number of active lots that are used for storage, number of steel plates allowed in a lot, which

can be also stated as lot capacity, and number of steel plates in the pile arriving each week to

the shipyard. Defining conveyor or crane speeds as variables are also taught to be applied but

later decided not to be used to make case simpler. Also for further works in the area, these

speeds may be defined with a stochastic distribution in QUEST instead of constant values

which will represent a more appropriate simulation.

Number of active lots

Number of active lots that are used for storage is set to be one of the design variables. It is

directly related with the area and WIP. They are activated or deactivated in a logical sense.

Lots are grouped as rows while they are being activated and deactivated. Also, in order to

have a realistic case, they are being started to be activated from the closest row to the

conveyor to the farthest one. In some cases, some sections are totally deactivated in order to

see whether it is also feasible to work with less area and less cranes.

As it is already explained, activation of lots is controlled by a binary approach given as

Appendix C. The lots are activated or deactivated as rows. Furthermore, in some cases, some

sections are deactivated completely. This action is also controlled with the same Excel File

which has the binary code logic. The creation of lots by rows is implemented with another

code which given in Appendix D. Finally, number of active rows in a section is a variable

defined in another code which is given in Appendix E. The connection of these variables with

optimization software will be described and shown in section “Coupling and set-up” clearly.

Also it should be noted that number of active lots is assumed to be 1 design variable.

However, in MODEFRONTIER they are modelled as 3 different variables for each section

separately to investigate the case when some sections are completely not active.

Number of steel plates allowed in a lot

Number of steel plates allowed to be stored in a lot is another design variable. As number of

active lots decrease, it is expected that number of plates in a lot would increase. In reality, it

would have major impact on piling and unpiling time. However, it is not possible to see this

fact in current application, since piling and unpiling function is not implemented in the

simulation yet. Still, it has direct effect on area and WIP.

It is defined within the same code in simulation folder which is given as an appendix D.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 45

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Number of steel plates arriving in a pile

New pile of steel plates is assumed to arrive once a week. This frequency will be kept

constant throughout each iteration and also is kept same for all cases. However, number of

steel plates in arriving pile is selected as the last design variable. Thus, the result gives clear

idea how to plan purchasing. Distribution of steel plate types among a pile is also kept

constant in all cases.

The number of steel plates is also placed in a code for simulation. The code that is presented

in Appendix E is used to alter this variable as well.

It might be seen from the code given that this variable is defined with source frequency. As it

is already described, it is assumed in the simulation that a new pile arrives to the shipyard

once a week with a certain number of steel plates in the pile. In order to model this operation,

a main buffer is defined which holds all the created plates for a week and transfers them to

active sections once week. Therefore, the frequency of creation of steel plates is altered to

have different numbers of steel plates held in the main buffer. Despite the fact that number of

plates in an arriving pile is set to be the design variable, in MODEFRONTIER set-up,

frequency is the input variable.

2.3.3.3. Constraints

As it is presented in Figure 13, some constraints and limits are needed to be defined for design

variables and objective functions in order to have realistic and feasible results. Also not

defining certain constraints result in longer computation time.

Some of these limits are defined within selection of parameters, while some are defined with

additional constraint nodes which will be shown clearly in next section when the set-up will

be explained.

To start with, in all cases, number of active row of lots will be minimum zero. Therefore, it

would be possible to see the results for conditions when some sections are not active. This

might cause the result that when none of the sections are active, the optimization may yield

the optimum results that WIP and area used for storage are both “0”. In order to prevent that

constraints are defined for objective functions.

P 46 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

A limit is defined for number of allowed steel plates in a lot as well. Having too low number

of steel plates in a lot is an unfeasible condition in reality. Contrary, having huge piles is also

an unfeasible and practically dangerous and impossible. Besides, in a real case, pile and

unpile operation occurs in the shipyard and having high number of steel plates in a lot will

result in too much consumption of time during this process. Therefore, an assumption is made

and this number is limited between 5 and 15 in all cases.

Another design variable is number of steel plates in the pile arriving each week. This value is

also limited with lower and upper boundaries. However, this number is altered for different

cases due to the fact that steel processing capacity of a shipyard is altered. Different numbers

of steel plates are defined based on different capacities of processing. The fact that having too

much steel plate arriving each week will cause increasing number of stored materials in

stockyard and WIP will get higher due to this fact, upper limits are decided close to

capacities. Also in MODEFRONTIER it will be represented with altering frequency,

therefore the limits are defined as time steps, not as number of steel plates in the pile.

Constraints are defined for both of the objective functions as well. This due to the fact that

having “0” value for WIP or required area for storage is an unfeasible solution which

corresponds to the meaning that no process takes place in stockyard and it is not the case we

try to analyse. Therefore the results are constrained to have values greater than “0”.

2.3.4. Coupling and set-up

Both QUEST and MODEFRONTIER are capable of coupling with other software. In fact,

MODEFRONTIER offers easy coupling with some modules for some software already such

as ANSYS and SOLIDWORKS. However, a batch code is required to make it work with

QUEST. Also it should be noted that MODEFRONTIER and QUEST use different file

formats. Therefore, batch codes are used to convert formats from one form to another in order

to supply connection and flow of data between them.

Before further explaining the process, it may be helpful to take a look at the loop created in

MODEFRONTIER to run the optimization. Figure 14 in the next page shows the loop. It can

be seen that MODEFRONTIER offers an easy to use and understand user interface. Each

module will be explained in details about how they function and how they are set in our task.

Figure 14: Optimization loop

A number is given for each of the modules for easier follow up of descriptions. Now they will

be explained in details.

Module 1

As it is seen in the Figure 14, module 1 is called as “DOE”. It is a module to create a design

space. DOE is the abbreviation of “Design of Experiments” which has the meaning that it

covers every possible combination of design variables. In MODEFRONTIER, DOE module

is used to create the initial design variable combinations for the optimization iterations.

Creating 10 random designs is sufficient in application. Other designs are created by the

software based on MOGA-II algorithm. It can be seen that values for each variable are created

within the defined limits.

Module 2

The module presented with MOGA-II is actually named as “scheduler” in the software. It

enables users to select any optimization algorithm that is fitting their purpose and case. Figure

15 shows the Scheduler window.

Figure 15: Scheduler

It can be seen from Figure 15 that several algorithms are offered by software. Since we

already decided to use MOGA as an evolutionary algorithm, it is selected. Also it can be seen

that there are brief explanations related with each algorithm on the top of the window which

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 49

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

may be helpful for selection as well. The probability values for directional cross-over,

selection and mutation may be entered in this window. Also whether or not elitism will occur

in process may be selected. Since the default values presented by the software are used

commonly and widely, these values are kept constant as well. The number of iterations is

selected as well with the “Number of Generation” line in this window. This means that the

loop will be repeated for given number of times. However it is also possible to stop the run

before reaching the decided iteration number if any convergence is observed in the results.

Module 3

Module 3 is an input variable. “Buffer_cap” refers to design variable which is stated as

number of steel plates that a lot may store. The module is used to define the limits and steps

of the defined input variable. In our case, the values are integers; therefore the step is defined

as 1.0. Also lower and upper boundaries are selected as 5 and 15.

MODEFRONTIER gives the chance for defining a distribution for the interval of possible

values. However in our application we do not define any distribution.

Module 4

Module 4 is used to define input template. It is used to define the selected input variables that

are changed from the database. The file is connected and then the corresponding data is

selected from the “Edit Input Template” section. It may also be noted that in each window,

other connected data and processes are shown in the lower part of the window.

After selection of template file from the QUEST folder, the relevant data is selected from the

input template file as shown in Figure 16 given below.

P 50 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Figure 16: Input Template Editor – Number of steel plates allowed in a lot

As it is seen, the data that defines the number of steel plates is selected from the code that is

placed in the database of QUEST which is already given in Appendix D.

Module 5

Module 5 is a DOS batch module. It is used to take the changed file and place it in the

database of QUEST. It is one the trickiest parts of the coupling due to the fact that without

this module, the changed input variable is not altered in the QUEST database. This results

from the fact that QUEST and MODEFRONTIER use separate folders for creating and

storing data files. Therefore the required data is parsed to the system folder used for

simulation.

Module 6

This module is a transfer file. It is used to make MODEFRONTIER transfer the generated

files to database folder of simulation. The file “QB_buffer”, which is given in Appendix D,

controls the creation of lots, which is named as “buffer” in QUEST.

Module 7

This module represents another input variable. Number of steel plates is chosen as design

variable. However as mentioned previously, source frequency is defined as the input variable

in MODEFRONTIER set-up.

The same procedure is followed as module 3 for defining the source frequency as input

variable.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 51

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

It can be again stated that since all possible values are integer, the step is defined as 1.0. The

lower and upper boundaries are defined. It should be noted that these values are time steps

defined in QUEST. As briefly stated before, QUEST uses time steps for inputting frequency.

It has the meaning that a new plate is created in the source in every time step entered which

has the unit of seconds.

Module 8

All input variables defining active buffers in sections are numbered together as Module 8.

They all have the same working principle with different connections in the corresponding data

file. They are defined as separate input variables to enable the search for cases when any

section is totally deactivated. It is possible to see the results when they are arranged and

planned separately.

As it is described below, in case of the fact that no rows are active in a section, it corresponds

to the meaning that that section is totally out of work and only other 2 or 1 section are

currently being used for storage. By this approach, it is possible to observe results showing

the conditions with 1 or 2 sections are totally deactivated.

Module 9

Module 9 works in a similar way with module 4 previously described for the input variable

number of steel plates allowed in a lot. However in this case, all 4 input variables, which are

source frequency and number of active rows in 3 sections, are connected with one module

since they are all read from the same database folder. All variables are defined in the code

called as “main_scl” which is given in the appendix E.

Module 10

It has the same duty with Module 5 and it is another DOS batch module. It is defined to place

changed variables in QUEST database for simulation running.

Module 11

This module is a file transfer module like module 6 too. It is used to inform

MODEFRONTIER that the generated data is going to be placed in the database of simulation.

It is required to make the connection of two software. The data that is transferred is

P 52 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

“main_scl” code which is given as Appendix E. It contains the data related with source

frequency and number of active rows which is already explained.

Module 12

“QuestBatch” is a module that connects QUEST and MODEFROTIER basically. The code

that is used is given in the Appendix F. It is summoning QUEST to run with

MODEFRONTIER. By this file, in each iteration design variables are taken from

MODEFRONTIER and a simulation is conducted in QUEST. The results are gathered from

QUEST and then processed in MODEFRONTIER. MODEFRONTIER takes the results and

runs the optimization task. As it is a loop, the same flow of data is repeated for each of the

iterations.

It is a DOS batch module. It can be stated that it is the black box that connects input variables

to output variables. As is it is described, modules that are presented so far are related with

input of the optimization task. This module calls QUEST and starts to runs the simulation.

Next modules are related with the output of the task.

Module 13

It is a support file module. It is used to define the data that is going to be minimized or

maximized. Therefore it can be stated that it is the module that is used to implement objective

function in MODEFRONTIER.

It is taken from the report file of the simulation. This file is connected to gather the results of

number of active buffers in each iteration. As described before this data is used to represent

the area used for storage of steel plates in the stockyard.

Module 14

Module is the other support file for the second objective function, which is minimizing the

WIP. It can be seen from the figure below that again a file is created within the report folder

of QUEST.

The required data for calculating the WIP is gathered from that file. For the calculation of

WIP, another code will be used which is already described and given in Appendix B.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 53

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Module 15

Similar to input template modules, this module is used to define the data that is going to be

altered in the output files which are integrated to the MODEFRONTIER as support files.

Module 16

Similar to what is explained for module 15, this module is used for WIP output. The

respective data is selected from the created report file. The connection supplies the change of

data after each iteration in the selected data in the file.

Module 17

It is a logic end module which is used to define that the loop is completed. The same steps of

optimization will be repeated for the rest of the task until the predefined number of iterations

is reached or the run is manually stopped.

Modules 18 and 19

These modules are used to define the properties of output data which are the final results

obtained from the simulation and processing of these data into the values we search for.

Number of active lots and calculated WIP are defined with these modules. Figure 37 shows

the properties window for number of active buffers.

Since number of buffers is an integer value, format is set to be that way. However WIP is

selected to be a value with 3 decimals. This selection of properties is done due to the fact that

WIP is calculated by integration and a more precise result may be required.

Modules 20 and 21

The objective function is formulated with these two modules. They are explained in the same

section since both are done with similar approach. In our case both of our defined output

variables are needed to be minimized since our objective functions are defined as minimizing

the are required for storage of steel plates, which is corresponding to the objective defined in

MODEFRONTIER as minimizing the number of active lots, and minimizing WIP.

Modules 22 and 23

As it is described before, some constraints are needed to be defined to reach valid and feasible

results for objective functions. For both objectives, having “0” as number of active buffers

P 54 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

and WIP would result in most optimum solutions as “0” is the minimum solution for both.

However in reality this result does not have any equivalent because of the fact this result

means that no operations or flow of process takes place. Therefore constraints are defined for

both objectives and they are set to be greater than “0”. It may be noted as well that, as a

design variable, number of active lots in each section are selected as they can be equal to “0”.

This approach is followed due to the fact that the results of trials for the cases when 1 or 2 of

the sections are deactivated.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 55

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

3. RESULTS

This section covers the results for three trials run with the optimization set-up presented in the

previous section. Before showing the results for test cases, the parameters that are different in

each case will be explained.

It is already stated that the model and simulation are done based on the steel stockyard of the

Atlantico Sul Shipyard. Therefore, in the first case, the steel processing capacity of the

shipyard is selected as the given value in the website of the shipyard, which is 160.000 tons

per year.

The other two cases are defined to evaluate the cases for shipyards with different capacities.

As 160.000 tons per year may be assumed as the capacity for a big shipyard, in other cases

lower steel processing capacities are considered which are 100.000 and 40.000 tons per year.

However, it should be noted that the layout of Atlantico Sul is used in all cases.

With other two cases under consideration, some parameters are needed to be altered in both

QUEST and MODEFRONTIER which will be described below.

The frequency of steel plate request is a parameter defined in QUEST. It may also be

reminded that it is a pull production system. In the first case, it was defined 160.000 tons per

year which is the actual capacity of shipyard. Since other cases deal with lower capacities, this

fact should be represented in simulation as well. As it is mentioned, QUEST uses time steps

to define frequency. Therefore, a simple calculation is carried out to define the time interval

of steel plate request from the sink based on the steel plate processing capacity of shipyard

which is in unit of tons/year.

The calculations are done based on the assumption that an average steel plate has the weight

of 2.58 tons, which is the average value for the 10 types of steel plates selected for our

application. Table 4 below shows the time steps calculated for each case.

Table 4: Time steps for each case

Cases tons/year tons/second plates/second Time step (sec)

1 160000 0.0051 0.0020 509

2 100000 0.0032 0.0012 814

3 40000 0.0013 0.0005 2034

P 56 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

It can be seen that with decreasing capacity of steel processing, time interval between requests

for new steel plates increases.

Based on the changing steel plate processing capacity of shipyard, adjustments are required to

be done in MODEFRONTIER as well. Same loop and most of the variables are kept constant.

It is not required to make changes in design variables such as number of steel plates allowed

to be stored in a lot and number of active lots. In addition, the objective functions are kept

constant as well. However for healthy evaluation of results and in order to prevent crashing of

software, source frequency boundaries are needed to be altered in each case. This is due to

fact that number of steel plates arriving to the stockyard per week would not be same for a

shipyard with greater capacity and relatively smaller capacity.

Furthermore, it should be again stated that source frequencies in each cases are defined based

on the request frequency from the sink created in QUEST which corresponds to the

processing capacity in the model. Also it should be reminded that source frequency is used to

define the arriving number of plates once a week. The plates that are stored in the initial

buffer are distributed each week.

For all cases, lower and upper bounds are selected to be 25% less and higher than source

frequency. The boundaries are given for each case in Table 5 below.

Table 5: Source freuquency boundaries for each case

Cases

Request frequency Source frequency

Time step (sec)
Lower

boundary
(second)

Upper
boundary
(second)

1 509 381 636

2 814 610 1017

3 2034 1526 2543

It should be reminded that boundaries for source frequencies are also in the unit of seconds

and defined as time steps. It has the meaning that lower values for source frequency means

greater number of steel plates being created in the source arrive to the buffers in QUEST.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 57

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

3.1. Case 1

The first case is run with the given values in the previous section. It will be seen from the

results that 1064 iterations are completed. As stated, the case can be identified as a rather

difficult one due to the fact that 5 design parameters are being altered within certain intervals

and software requires more iterations and therefore more time reach to obtain a more valid

Pareto diagram.

Regarding the optimization procedure, it may also be noted that each iteration takes

approximately 3 minutes, which results in several hours to reach the desired number of

iterations.

All values regarding the optimization procedure are taken from MODEFRONTIER. Graphs

will be presented in this section regarding the change of design variables and obtained results.

It should also be noted that there are several failures in the simulation due to the full loading

of the active lots in any of the sections. When the full loading condition is obtained and no

more place is left for storing new arriving plates, the case is identified as failure by the

software. Thus, it can be observed in Figure 17 that almost 50% of the results are failures.

Figure 17: Percentage of errors and feasible results

However, it is also seen that number of failures decrease towards the last iterations which is a

proof that optimization process starts to yield better results throughout the run. It is resulted

from the nature of the algorithm as it tries to select and create healthier design variables with

each new iteration.

P 58 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Figures below shows the design variables used in each iteration. As mentioned before there

are five design variables defined in the loop which are number of plates allowed in a lot,

source frequency and three separate variables for number of active rows in each section.

Figure 18 shows the values used by software for number of plates allowed in a lot in each

iteration.

Figure 18: Number of plates allowed in a lot vs number of iterations

It can be seen that feasible results are generally obtained for “12” as number of plates that is

allowed to be stored in a lot. It can also be seen that jumps of values occur several times due

to the nature of genetic algorithm used. It can be discussed whether current of number of

iterations is sufficient. Also as mentioned before number of errors tends to decrease as

number of iterations increase.

Similarly Figure 19 shows the graph for change of source frequency.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 59

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Figure 19: Source frequency vs number of iterations

It can be seen that feasible values for source frequency are grouped close to the maximum

value that can be given within the defined limits. This fact is resulted due to the fact that

lower source frequency value corresponds to high frequency of plates arriving to the

stockyard which eventually causes early filling of the active lots and error of the simulation.

Figures 20, 21 and 22 below show the design variables, number of active rows in each section

separately

.

Figure 20: Number of active rows in section A vs number of iterations

P 60 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Figure 21: Number of active rows in section B vs number of iterations

Figure 22: Number of active rows in section C vs number of iterations

It can be suggested for the cases that are failing, number of active rows in each section are

rather small. This fact causes for early filling of active lots and results in the failure of

simulation as well. However, it can be seen that most feasible results are obtained for 24

active rows in section A, 18 in section B and 12 in section C.

Also it should be noted that lower boundary for active buffers is set to be “1” in the

application. It was initially desired to see the effect of closing a whole section in the

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 61

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

stockyard. However an error occurred during the run related with the cases in which one or

two of the sections are closed. Therefore a change is made in order to solve the problem.

The graphs given so far are used for defining the feasible results. It is fair to state that

converging variables are seen in the graphs. However for better evaluating the quality of the

results that are obtained, graphs that are given below are considered to be rather enlightening.

Figures below show the results for objectives with respect to number of iterations.

It should be noted that it only shows the ones that are feasible. There are no unfeasible results

obtained from the procedure. However as mentioned before, 50% of the results are failures

resulted from the simulation. The failures are not plotted in the graphs since they deliver no

valid result.

Figure 23 shows WIP versus number of iterations.

Figure 23: WIP vs number of iterations

It can be seen from Figure 23 that results show some convergence in the end. However a clear

convergence is also seen between iterations 480 and 700. Therefore, it is fair to state that it is

not possible to give a clear answer at this stage of run and more iterations are needed for

having a more fit result. Still it is clear that the objective of minimizing the WIP is being done

even with this number of iterations.

P 62 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

The evaluation of the values obtained will be presented later after the Pareto diagram.

Similarly Figure 24 shows number of active buffers values obtained in feasible solutions.

Figure 24: Number of active buffers vs number of iterations

It can be seen from Figure 24 that similar to what is already discussed for other objective

function, WIP; there is a tendency to minimize the number of active buffers in the stockyard.

Compared to WIP, jumps in the results are not big.

As it can be seen from Figures 23 and 24, number of feasible results has a tendency to

increase throughout the run. Therefore it is fair to state that reaching a certain amount of

iteration number will yield more valid results for the task.

Finally Figure 25 below shows the pareto graph for the case. As we have a limited number of

iterations completed so far and rather less feasible results, it is not possible to suggest that the

results are satisfying and may be taken as a source to give decisions regarding the design of

the steel stockyard activities and layout. However it is still important to understand how the

graph may be used for decision making in an ideal condition.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 63

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

Figure 25: Pareto graph - Number of active buffers vs WIP

As already discussed, current number of iterations, 1064, is clearly not sufficient for our task.

It can be also understood from the Pareto diagram presented. It was expected to have clear

Pareto frontier in the graph with the most common and best results for our task. However it is

seen that despite the fact that there are certain feasible results that can be selected from the

results, no grouping of the result is seen.

It should be also noted several alternative give the same outcome as results. As described

before, Pareto graph is a great tool showing every possible outcome of each alternative and

creates a space to select among possible alternatives. Based on the solutions obtained so far, it

can be stated that the point represented with red circle in the graph is the optimum one. Table

6 below shows the iterations that correspond to the selected results. It also covers the values

of design variables and results for the objective function.

P 64 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Table 6: Optimum results

Iterations
953, 954, 958, 961, 966,

971, 989, 1009, 1022,

1037, 1050, 1061, 1063

Design variables

Number of active lots in section A 24

Number of active lots in section B 18

Number of active lots in section C 12

Source frequency (second) 611

Number of steel plates allowed in a lot 12

Objective functions
WIP (ton.second) 1.17*10

9

Number of active buffers 193

Based on the results obtained, it can stated that current steel stockyard layout of the shipyard

is not the optimum one. More efficient solutions regarding WIP and area covered can be

obtained by changing the layout of the steel stockyard. Less area can be used for storage and

free area may be used for alternative purposes. Also proper planning of the arriving steel

plates may yield more efficient outcomes as well compared to initial condition.

It can be seen from the results that even such a high number of iterations is not sufficient to

reach a certain conclusion in a complicated real industrial problem. Therefore for better

evaluation of the case, more iterations are needed. It should be stated that, more iterations will

be carried out and the results will be submitted as an “Addendum”.

Furthermore, it may be also noted that several assumptions and approximations were done

within the simulation. Deeper analysis of the results will be discussed in “Conclusion”

section.

3.2. Cases 2 and 3

Due to the limited time of internship and thesis completion, these two cases were not

conducted. As stated running the process takes significantly long time to reach the

convergence.

Therefore, in case of completion of all cases, these cases will be presented in the “Addendum”

as well.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 65

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

4. CONCLUSION

Despite the fact that presented results are not totally ideal for the application and desired

purpose of the work, it is possible to observe convergence of the result towards the minimum.

An “Addendum” will be presented later when the runs are completed for all cases.

Furthermore, it can be said that main initial objective of the work is fulfilled which is

coupling a simulation software with an optimization tool and making it work.

Besides the inefficient results that are presented, it should be also noted that to reduce the

optimization time required, 10 user defined values may be used instead of random DOE.

These values may be selected from the ones that would not cause any failure in simulation

due to full loading condition. Thus, MODEFRONTIER will be guided to better results that

would yield less failures and greater number of valid results may be obtained in a shorter

amount of time.

The results support the suggestion that coupling simulation and optimization would yield an

efficient solution for real industrial problems. However it should be underlined that real

industrial problems involve several issues and details which are difficult to simulate and

optimize properly. The work clearly proves that the process of creating the simulation and

coupling with an optimization tool is a complicated task to complete and requires great

amount of time and work.

However it is also fair to suggest that both QUEST and MODEFRONTIER are powerful,

capable and useful software. They offer great amount of help and user-friendly solutions for

such applications.

To sum up, it is believed that this work may be regarded as a stepping stone for several future

works in the field. It is clear that shipbuilding industry is headed in a direction that concepts

mentioned within the work will become more important in near future.

P 66 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

5. FUTURE WORK

The thesis showed that coupling of simulation and optimization software is a useful and

applicable approach. Therefore, it can be stated that works in this field will increase with

further applications in shipbuilding as well as other industries.

Based on the some deficiencies of the work presented, some suggestions may be given to

researchers for improving and carrying on with further works.

First of all, as it is stated and justified, simulation used within the thesis is not stochastic.

Having completely correct and precise results were not the main objective of this work which

is conducted in a limited time. For better results, simulation may be developed with stochastic

data.

Another future step to develop the work may be implementing the piling and unpiling

operations in steel stockyard. Again, due to the limited time of internship, this operation was

not implemented in the simulation. This fact had a direct impact on the results. Therefore

implementing this operation will significantly improve the work. Besides, other operations

regarding plate processing may also be modelled and added to the simulation as well.

Furthermore, some additional design variables and new objective functions may be

introduced. Crane and conveyor speeds are two options for design variables which may be

taken into account as well. An objective that is related with cost directly may be implemented

with some coding for cost calculation based on some assumptions and approximations.

Finally, the work shows that simulation and optimization software can be coupled and they

can work together giving promising results. Therefore, same approach may be followed for

other steps of shipbuilding process.

As it is already mentioned, it is believed that several works are going to be done and

published in the field of simulation and optimization in the coming years and it is hoped that

the thesis may be used by researchers to have some idea about the subject.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 67

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

6. REFERENCES

Stopford, Martin. Maritime Economics. 2nd ed. London [etc.: Routledge, 1997. Print.

"Shipbuilding Statistics." (2015). The Shipbuilders' Association of Japan. Web. 2015.

Gebhart, Laurence P., and Robert G. Jarvis. "Productivity Improvement at the SENESCO

Shipyard." Journal of Ship Production 19.3 (2003): 187-93. Print.

Park, C., J.-C. Park, G.-G. Byeon, H.-G. Kim, and J. Kim. "Steel Stock Management on the

Stockyard Operations in Shipbuilding: A Case of Hyundai Heavy Industries." Production

Planning & Control (2006): 1-12. Print.

Koenig, Philip C., Hitoshi Narita, and Koichi Baba. "Shipbuilding Productivity Rates of

Change in East Asia." Journal of Ship Production 19.1 (2003): 32-37. Print.

Kolic, Damir, Niksa Fafandjel, and Albert Zamarin. "Lean Manufacturing Methodology for

Shipyards." (2013). Print.

Lang, S., N. Dutta, A. Hellesoy, T. Daniels, D. Liess, S. Chew, and A. Canhetti.

"Shipbuilding and Lean Manufacturing - A Case Study." The Society of Naval Architects and

Marine Engineers (2001). Print.

Liker, Jeffrey K, and Thomas Lamb. "What Is Lean Ship Construction and Repair?" Journal

of Ship Production 18.3 (2002): 121-42. Print.

Phogat, Sandeep. "An Introduction to Applicability of Lean in Shipbuilding." International

Journal of Latest Research in Science and Technology 2.6 (2013): 85-89. Print.

Cha, Ju-Hwan, and Myung-Il Roh. "Combined Discrete Event and Discrete Time Simulation

Framework and Its Application to the Block Erection Process in Shipbuilding." Advances in

Engineering Software 41 (2010): 656-65. Elsevier. Web.

Cha, Ju-Hwan, Myung-Il Roh, and Kyu-Yeul Lee. "Integrated Simulation Framework for the

Process Planning of Ships and Offshore Structures." Robotics and Computer-Integrated

Manufacturing (2010): 430-53. Print.

Fernández, Rodrigo Pérez, and Verónica Alonso. "Virtual Reality in a Shipbuilding

Environment." Advances in Engineering Software (2015): 30-40. Print.

P 68 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Caprace, J.-D., C. Petcu, M. G. Velarde, and P. Rigo. "Optimization of Shipyard Space

Allocation and Scheduling Using a Heuristic Algorithm." J Mar Sci Technol Journal of

Marine Science and Technology (2013): 404-17. Print.

Bair, Frederic, Yves Langer, Jean-David Caprace, and Philippe Rigo. "Modelling, Simulation

and Optimization of a Shipbuilding Workshop (2006)." Print.

Konak, Abdullah, David W Coit, and Alice E Smith. "Multi-Objective Optimization Using

Genetic Algorithms: A Tutorial." Reliability Engineering & System Safety 91.9 (2006): 992-

1007. Print.

Justesen, Peter Dueholm. "Multi-Objective Optimization Using Evolutionary Algorihms."

(2009). Print.

Nilsen, Espen. "Parameterization and Multiobjective Optimization." (2013). Print.

Mitchell, Melanie. An Introduction to Genetic Algorithms. Cambridge, Mass.: MIT, 1996.

Print.

Fishman, G. S., 2001. Discrete-Event Simulation: Modelling, Programing and Analysis.

Newyork, US: Springer Verlag Newyork Inc.

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 69

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

7. APPENDICES

7.1. Appendix A

P 70 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 71

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

P 72 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 73

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

P 74 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

7.2. Appendix B

#include <include_str_parthistory.inc>

#include <include_lib_dir.inc>

#include <include_str_elements.inc>

#include <agv.inc>

/* Preparing the code*/

-- Set extern routines

EXTERN

 open_output_stream : Routine : Integer

-- Set global Variables

BCL_VAR

 bcl_msg : string

 bcl_status : Real

-- Set user attributes to be used

User_attrib

 pweight : real -- user atribute for weight of the parts

/**/

 /*-Code starts*/

/****f* scl/sample_weight_storage()

 * NAME

 * sample_weight_storage()

 * SYNOPSIS

 * * sample_weight_storage()

 * FUNCTION

 * Sample the weight storaged in all buffers in some point of simulation.

 * INPUTS

 *

 * RESULT

 * Real

 * AUTHOR

 * $Author: GMonteiro $

 * CREATION DATE

 * $Date: 2015/12/07 11:39:41 $

 * HISTORY

 * $Revision: 1.9 $

 * SOURCE

 */

Routine sample_weight_storage() : real

VAR

the_element : Element

the_part : Part

icount : Integer

weight : real

Begin

/***********************************Code Start*********************************/

if(first_element == NULL) then

 exit

endif

the_element = first_element

----------------------------Loop for seek all buffers---------------------------

 while(the_element <> NULL) do

 if (the_element->element_type == BUFFER) then

 for icount = 1 to the_element->num_out_parts do

 if (the_element->out_parts[1] <> NULL) Then

 the_part = the_element->out_parts[icount]

 weight = weight + the_part->pclass->pweight -- get weight

 --write(weight,cr)

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 75

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

 endif

 endfor

 endif

 the_element = the_element->next_element

endwhile

---------------------------------finish the code--------------------------------

return weight

--write("Final weight = ",weight,cr)

End

/**/

/****m* scl/track_weight

 * NAME

 * track_weight

 * SYNOPSIS

 * * track_weight()

 * FUNCTION

 * run the simulation for simtime and get number_samples samples of weight

 * change the consts if needed

 * INPUTS

 *

 * AUTHOR

 * $Author: GMonteiro $

 * CREATION DATE

 * $Date: 2015/12/07 11:39:41 $

 * HISTORY

 * $Revision: 1.9 $

 * SOURCE

 */

Procedure track_weight()

CONS

weight_outfile 'REPORTS\\weight.csv'

number_samples 1000

simtime 2678400

VAR

the_time : integer

the_weight : real

sim_step : real

icount : Integer

out_stream : Integer

outfilepath : String

Begin

/***********************************Code Start*********************************/

---------------------------set the bases of the code----------------------------

outfilepath = libdir + weight_outfile

out_stream = open_output_stream(outfilepath)

the_time = 0

sim_step = (simtime / number_samples)

-----------------------------check for inconsistence----------------------------

if (sim_step == 0 OR sim_step < 0) then

 write ("FATAL ERROR IN SIM_STEP, PLEASE CHECK!!")

 exit

endif

------------------------------------first run-----------------------------------

 exec_bcl_cmd ("RUN " + str("%g",sim_step))

 the_weight = sample_weight_storage()

 the_time = sim_time

 --write (the_time,the_weight,cr)

 write (#out_stream,the_time,';',the_weight,cr)

--------------------------------get all samples---------------------------------

for icount = 1 to number_samples by 1 do

P 76 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

 exec_bcl_cmd("CONTINUE FOR "+ str("%g",sim_step))

 the_weight = sample_weight_storage()

 the_time = sim_time

 if (signal_status(666) ==1) then -- signal 666 was reserved only for this

 --write("CATCH THE ERROR!!!!!",cr) -- debug only

 --sim_warning "Error in the cranes!!!"

 write (#out_stream,the_time,';',"Storage full!",cr)

 delay 5 -- give time for write the file

 SUSPEND_LOGIC

 exit

 endif

 --write (the_weight,cr)

 write (#out_stream,the_time,';',the_weight,cr)

endfor

---------------------------------finish the code--------------------------------

END

/**/

/****m* scl/calculate_integral_weight()

 * NAME

 * calculate_integral_weight

 * SYNOPSIS

 * * calculate_integral_weight()

 * FUNCTION

 * calculate the discrete integral using the retangle approx for work in progress.

 * INPUTS

 *

 * AUTHOR

 * $Author: GMonteiro $

 * CREATION DATE

 * $Date: 2015/12/07 11:39:41 $

 * HISTORY

 * $Revision: 1.9 $

 * SOURCE

 */

Procedure calculate_integral_weight()

CONST

weight_file 'REPORTS\\weight.csv'

return_file 'REPORTS\\intregral_weight.txt'

VAR

inputfilepath : String

outputfilepath : String

curr_line : String

fail_check : Integer

time1 : string

weight1 : string

time2 : string

weight2 : string

dt : integer

dweight : real

integral : real

Begin

/***********************************Code Start*********************************/

---------------------------set the bases of the code----------------------------

inputfilepath = libdir + weight_file

outputfilepath = libdir + return_file

open file inputfilepath for text input as 7

read_line(#7, curr_line)

fail_check = 0

-------------------------------calc the integral--------------------------------

while (curr_line <> $EOF) do

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 77

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

 read_line(#7, curr_line)

 scan_str(curr_line, ';', time1, weight1)

 read_line(#7, curr_line)

 scan_str(curr_line, ';', time2, weight2)

 if (weight1 == "Storage full!" OR weight1 == "Storage full!") then

 fail_check = 1

 endif

 dt = val(time2) - val(time1)

 dweight = val(weight2) - val(weight1)

 integral = integral + (dt*dweight)

endwhile

---------------------------------finish the code--------------------------------

close #7 -- close stream channel

open file outputfilepath for text output as 9 -- open file to write

if (fail_check == 0) then

 write (#9,integral,cr) -- write the file

 else

 write (#9,"Storage full!",cr) -- write the file

endif

END

/**/

P 78 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

7.3. Appendix C

It should be noted that whole file is not given here. However this appendix is presented to represent

the respective file and show how the binary coding is integrated for activating and deactivating lots.

Buffer_namebuffer_bin buffer_section row col

Delivery 1 0 0 0

Buff_1 1 1 0 0

Buff_2 1 2 0 0

Buff_3 1 3 0 0

Minibuff1 1 1 0 0

Minibuff2 1 2 0 0

Minibuff3 1 3 0 0

BuffA1 1 1 1 1

BuffA2 1 1 1 2

BuffA3 1 1 1 3

BuffA4 1 1 2 1

BuffA5 1 1 2 2

BuffA6 1 1 2 3

BuffA7 1 1 3 1

BuffA8 1 1 3 2

BuffA9 1 1 3 3

BuffA10 1 1 4 1

BuffA11 1 1 4 2

BuffA12 1 1 4 3

BuffA13 1 1 5 1

BuffA14 1 1 5 2

BuffA15 1 1 5 3

BuffA16 1 1 6 1

BuffA17 1 1 6 2

BuffA18 1 1 6 3

BuffA19 1 1 7 1

BuffA20 1 1 7 2

BuffA21 1 1 7 3

BuffA22 1 1 8 1

BuffA23 1 1 8 2

BuffA24 1 1 8 3

BuffA25 1 1 9 1

BuffA26 1 1 9 2

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 79

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

7.4. Appendix D

#include <include_str_coordinates.inc>

#include <include_str_objects.inc>

#include <include_str_buffers.inc>

#include <include_lib_dir.inc>

EXTERN

 route_do_unload : Routine : Integer

 read_buffers : Routine : List : @Buffers

 open_output_stream : Routine : Integer

 buffer_rows : Array [] of Integer

Const

bufferinfilepath 'DATA\\Buffers.csv'

/****f* scl/

 * NAME

 *

 * SYNOPSIS

 * *

 * *

 * FUNCTION

 *

 * INPUTS

 *

 * RESULT

 *

 * AUTHOR

 * $Author: JMoita $

 * CREATION DATE

 * $Date: 2015/11/17 13:18:21 $

 * HISTORY

 * $Revision: 1.20 $

 * SOURCE

 */

Routine get_buffer_from_DB(buffer_name : String): @Buffers

VAR

 the_buffer : @Buffers

 buffers_list : List : @Buffers

 bufferinfiledir : String

 current_buffer : @Buffers

 icount : Integer

 num_buffers : Integer

Begin

 bufferinfiledir = libdir + bufferinfilepath

 buffers_list = read_buffers (bufferinfiledir)

 num_buffers = list_item_count(buffers_list)

 list_rewind (buffers_list)

 for icount = 1 to num_buffers by 1 do

 current_buffer = list_get_item(buffers_list)

 if (current_buffer->buffer_name == buffer_name) then

 the_buffer = current_buffer

 endif

P 80 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

 endfor

 return the_buffer

End

/****m* scl/create_a_buffer

 * NAME

 * Create a Quest source

 * SYNOPSIS

 * * create_a_buffer(object ; eclasslib)

 * * create_a_buffer(@Objects ; string)

 * FUNCTION

 * Create a Quest Buffer

 * INPUTS

 * * @Object - structure containig the parameters of an object

 * * @eclasslib - string representing the library containins the object class data

 * AUTHOR

 * $Author: JMoita $

 * CREATION DATE

 * $Date: 2015/11/17 13:18:21 $

 * HISTORY

 * $Revision: 1.20 $

 * SOURCE

 */

Procedure create_a_buffer(object : @Objects ; eclasslib: string)

var

 the_coord_opos : @Coordinates

 the_size_osize : @Coordinates

 the_rotation_orot : @Coordinates

 the_buffer : @Buffers

 buffer_name : String

 buffer_rows_var : array[3] of Integer

 bb : Integer

Begin

 buffer_name = object->oname

 the_coord_opos = &object->opos

 the_rotation_orot = &object->orot

 the_size_osize = &object->osizes

 buffer_rows_var = buffer_rows

 Switch object->odescr

 case 'Stkbuff':

 the_buffer = get_buffer_from_DB(buffer_name)

 bb = the_buffer->buffer_bin

 switch the_buffer->buffer_section

 case 1:

 if (buffer_rows_var[0] <> -1) then

 if (the_buffer->row > buffer_rows_var[0]) then

 bb = 0

 endif

 endif

 case 2:

 if (buffer_rows_var[1] <> -1) then

 if (the_buffer->row > buffer_rows_var[1]) then

 bb = 0

 endif

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 81

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

 endif

 case 3:

 if (buffer_rows_var[2] <> -1) then

 if (the_buffer->row > buffer_rows_var[2]) then

 bb = 0

 endif

 endif

 endswitch

 if (bb <> 0) then

 exec_bcl_cmd("CREATE BUFFER CLASS '" + object->oname + "' NUMBER OF ELEMENTS 0

GEO '" + object->ogeopath + "'")

 exec_bcl_cmd("SAVE ECLASS '" + object->oname + "' TO '" + eclasslib + "in.ecl'")

 set_eclass_dimensions(eclasslib + "in.ecl" , eclasslib + "out.ecl" , the_size_osize)

 exec_bcl_cmd("CREATE ELEMENT '" + object->oname + "_1' OF BUFFER CLASS '" + object-

>oname + "' AT " + str("%g",the_coord_opos->coordx) + ", " + str("%g",the_coord_opos->coordy) + ", " +

str("%g",the_coord_opos->coordz))

 rotate_element (object->oname , the_rotation_orot)

 exec_bcl_cmd("SET DEVICE '" + object->oname + "_1' RENDER TO $" + object->render)

 exec_bcl_cmd("SET '" + object->oname + "' OUT TYPE TO PULL")

 exec_bcl_cmd("SET '" + object->oname + "' CAPACITY TO 10")

 exec_bcl_cmd("SET '" + object->oname + "' ROUTE LOGIC TO 'Default Pull Route'")

 exec_bcl_cmd("SET '" + object->oname + "' REQUEST INPUT LOGIC TO 'Default Request

Input'")

 endif

 case 'Buffer':

 write(object->oname,cr)

 the_buffer = get_buffer_from_DB(buffer_name)

 write (the_buffer->buffer_name,cr)

 if (the_buffer->buffer_bin <> 0) then

 exec_bcl_cmd("CREATE BUFFER CLASS '" + object->oname + "' NUMBER OF ELEMENTS 0

GEO '" + object->ogeopath + "'")

 exec_bcl_cmd("SAVE ECLASS '" + object->oname + "' TO '" + eclasslib + "in.ecl'")

 set_eclass_dimensions(eclasslib + "in.ecl" , eclasslib + "out.ecl" , the_size_osize)

 exec_bcl_cmd("CREATE ELEMENT '" + object->oname + "_1' OF BUFFER CLASS '" + object-

>oname + "' AT " + str("%g",the_coord_opos->coordx) + ", " + str("%g",the_coord_opos->coordy) + ", " +

str("%g",the_coord_opos->coordz))

 rotate_element (object->oname , the_rotation_orot)

 exec_bcl_cmd("SET DEVICE '" + object->oname + "_1' RENDER TO $" + object->render)

 endif

 case 'Minibuffer':

 write(object->oname,cr)

 exec_bcl_cmd("CREATE BUFFER CLASS '" + object->oname + "' NUMBER OF ELEMENTS 0

GEO '" + object->ogeopath + "'")

 exec_bcl_cmd("SAVE ECLASS '" + object->oname + "' TO '" + eclasslib + "in.ecl'")

 set_eclass_dimensions(eclasslib + "in.ecl" , eclasslib + "out.ecl" , the_size_osize)

 exec_bcl_cmd("CREATE ELEMENT '" + object->oname + "_1' OF BUFFER CLASS '" + object-

>oname + "' AT " + str("%g",the_coord_opos->coordx) + ", " + str("%g",the_coord_opos->coordy) + ", " +

str("%g",the_coord_opos->coordz))

 rotate_element (object->oname , the_rotation_orot)

 exec_bcl_cmd("SET DEVICE '" + object->oname + "_1' RENDER TO $" + object->render)

 exec_bcl_cmd("SET '" + object->oname + "' OUT TYPE TO PULL")

 exec_bcl_cmd("SET '" + object->oname + "' IN TYPE TO PULL")

 exec_bcl_cmd("SET '" + object->oname + "' ROUTE LOGIC TO 'Default Pull Route'")

P 82 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

 exec_bcl_cmd("SET '" + object->oname + "' REQUEST INPUT LOGIC TO 'Default Request Input'")

 DEFAULT :

 exec_bcl_cmd("CREATE BUFFER CLASS '" + object->oname + "' NUMBER OF ELEMENTS 0

GEO '" + object->ogeopath + "'")

 exec_bcl_cmd("SAVE ECLASS '" + object->oname + "' TO '" + eclasslib + "in.ecl'")

 set_eclass_dimensions(eclasslib + "in.ecl" , eclasslib + "out.ecl" , the_size_osize)

 exec_bcl_cmd("CREATE ELEMENT '" + object->oname + "_1' OF BUFFER CLASS '" + object-

>oname + "' AT " + str("%g",the_coord_opos->coordx) + ", " + str("%g",the_coord_opos->coordy) + ", " +

str("%g",the_coord_opos->coordz))

 rotate_element (object->oname , the_rotation_orot)

 exec_bcl_cmd("SET DEVICE '" + object->oname + "_1' RENDER TO $" + object->render)

 Endswitch

 logger("BUFFER element '" + object->oname + "_1' created with success",1)

End

/*******/

/****m* scl/storage_buffer_route_logic

 * NAME

 * Storage Buffer's route logic

 * SYNOPSIS

 * * storage_buffer_route_logic()

 * FUNCTION

 * Is the route logic from the Storage Buffer that will retain the parts of third ship until

 * the firt ship is done. Then the Storage Buffer will send the parts for preerection.

 * It uses the signal to sync

 * INPUTS

 * AUTHOR

 * $Author: JMoita $

 * CREATION DATE

 * $Date: 2015/11/17 13:18:21 $

 * HISTORY

 * $Revision: 1.20 $

 * SOURCE

 */

Procedure storage_buffer_route_logic ()

var

 num_unloaded : Integer

Begin

 wait until signal 1 ON

 -- signal 1 means that ship one is done. See 'end_process_logic()' in QB_process

 --Needs to be modificated later. This is not general.

 -- These two lines below are the simple route logic from a buffer

 num_unloaded = route_do_unload()

 route_unload_parts(num_unloaded, 1, 1)

End

/*******/

/****m* scl/

 * NAME

 *

 * SYNOPSIS

 * *

 * *

 * FUNCTION

 *

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 83

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

 * INPUTS

 *

 * AUTHOR

 * $Author: JMoita $

 * CREATION DATE

 * $Date: 2015/11/17 13:18:21 $

 * HISTORY

 * $Revision: 1.20 $

 * SOURCE

 */

Procedure count_stkbuffers()

CONST

buffer_count_file 'REPORTS\\num_buffer.txt'

VAR

out_stream : Integer

outfilepath : String

buffer_count : Integer

the_element : Element

the_buffer : @Buffers

buffer_name : String

Begin

outfilepath = libdir + buffer_count_file

out_stream = open_output_stream(outfilepath)

buffer_count = 0

if(first_element == NULL) then

 exit

endif

the_element = first_element

 while(the_element <> NULL) do

 if (the_element->element_type == BUFFER) then

 write (the_element->name,cr)

 buffer_count = buffer_count + 1

 endif

 the_element = the_element->next_element

endwhile

write (#out_stream,buffer_count,cr)

END

P 84 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

7.5. Appendix E

It should be noted that this is a rather long code controlling the creation of the simulation.

Therefore it is shortened to show related sections with the application. The variable

determining lines are high lightened.

/* Add every include file here */

#include <include_lib_dir.inc>

#include <include_str_ships.inc>

#include <include_str_coordinates.inc>

#include <include_str_contaccessories.inc>

#include <include_str_elements.inc>

#include <include_str_joins.inc>

#include <include_str_element_assembly.inc>

#include <include_str_models.inc>

#include <include_str_objects.inc>

#include <include_str_objects_connection.inc>

#include <include_str_cranes.inc>

#include <include_str_street_nodes.inc>

#include <include_str_street_segments.inc>

#include <include_str_street_paths.inc>

#include <include_str_street_agvs.inc>

#include <include_str_street_decpts.inc>

#include <include_str_scenarios.inc>

#include <include_str_bayplan.inc>

#include <include_str_container.inc>

#include <include_str_Stowingschedule.inc>

#include <include_str_Arrivalcond.inc>

#include <include_str_labors.inc>

#include <include_str_vessels.inc>

#include <include_str_platforms_process.inc>

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 85

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

BCL_VAR

bcl_msg : string

--CONST

--$DEF_STR_LEN 500

/* Here include all extern functions to be utilized*/

EXTERN

read_ships : ROUTINE : List : @Ships

read_elements : ROUTINE : List : @Elements

read_joins : ROUTINE : List : @Joins

read_elements_assembly : ROUTINE : List : @Elementassembly

read_models : ROUTINE : List : @Models

read_objects : ROUTINE : List : @Objects

read_objects_connection : ROUTINE : List : @Objectconnection

read_cranes : ROUTINE : List : @Cranes

read_streetnodes : ROUTINE : List : @Streetnodes

read_streetsegments : ROUTINE : List : @Streetsegments

read_streetpaths : ROUTINE : List : @Streetpaths

read_streetagvs : ROUTINE : List : @Streetagvs

read_streetdecpts : ROUTINE : List : @Streetdecpts

read_bayplans : ROUTINE : List : @Bayplans

read_scenarios : Routine : List : @Scenarios

read_containers : ROUTINE : List : @Containers

read_Stowingschedules : ROUTINE : List : @Stowingschedules

read_arrivalconds : ROUTINE : List : @Arrivalconds

read_contaccessories : ROUTINE : List : @Cont_Accessories

read_labors : Routine : List : @Labors

P 86 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

read_vessels : Routine : List : @Vessels

read_platforms_process : Routine : List : @Platforms_Process

count_nbr_conected_block : Routine : Integer

/* Here we define all the global variables*/

Var

 SCHEDULE_name : String -- a global variable for the schedule file name

 buffer_rows : Array [3] of Integer

/********************************** Main Procedure **********************************/

/****m* scl/main

 * NAME

 * Run the main procedure of the software

 * SYNOPSIS

 * * main()

 * * main()

 * FUNCTION

 * Run the main procedure of the software

 * INPUTS

 * RESULT

 * AUTHOR

 * $Author: GMonteiro $

 * CREATION DATE

 * $Date: 2015/11/10 16:32:52 $

 * HISTORY

 * $Revision: 1.98 $

 * SOURCE

 */

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 87

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

procedure main1()

/* First thing to do is to add all DATA file as const variables*/

Const

 shipinfilepath 'DATA\\Ships.csv'

 elementinfilepath 'DATA\\Elements.csv'

 joininfilepath 'DATA\\Joins.csv'

 elemassinfilepath 'DATA\\Elements_Assembly.csv'

 modelinfilepath 'DATA\\Models.csv'

 objectinfilepath 'DATA\\Objects.csv'

 objconninfilepath 'DATA\\Objects_Connection.csv'

 cranesinfilepath 'DATA\\Cranes.csv'

 streetnodesinfilepath 'DATA\\Street_Nodes.csv'

 streetsegmtsinfilepath 'DATA\\Street_Segments.csv'

 streetpathinfilepath 'DATA\\Street_Paths.csv'

 streetagvsinfilepath 'DATA\\Street_Agvs.csv'

 streetdecptsinfilepath 'DATA\\Street_Decpts.csv'

 bayplansinfilepath 'DATA\\Bayplan.csv'

 scenariosinfilepath 'DATA\\Scenarios.csv'

 schedulepath 'SCHEDULES\\Schedule.DAT'

 containersinfilepath 'DATA\\Container.csv'

 stowingschedulesinfilepath 'DATA\\Stowingschedule.csv'

 arrivalcondsinfilepath 'DATA\\Arrivalcond.csv'

 contaccessoriesinfilepath 'DATA\\Containers_accessories.csv'

 laborsinfilepath 'DATA\\Labors.csv'

 conveyorinfilepath 'DATA\\Conveyors.csv'

 processinfilepath 'DATA\\Process.csv'

 vesselsinfilepath 'DATA\\Vessels.csv'

 platformsprocessinfilepath 'DATA\\Platforms_Process.csv'

[……..]

 modelid 6

 scenarioid 20

P 88 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

 shipyard_year_capacity 40000

 sqr_number 100 --model_grid

 sqr_length 10 --model_grid

 time_interval 3600

 SCHEDULE_name = rightstr(schedulepath,len(schedulepath)-10) -- get the schedule name

 laborgeolib = libdir + geopath + 'DEFAULTS\\labor'

 laborcontrollerlib = libdir + geopath + 'DEFAULTS\\Labor_controller'

 partgeolib = libdir + geopath + 'PARTS\\'

 conveyor_config_file = libdir + conveyorinfilepath

 process_config_file = libdir + processinfilepath

 buffer_rows[0] = -1

 buffer_rows[1] = -1

 buffer_rows[2] = 1

 logger("End reading the databases", 1)

[………]

/**********************************End reading the databases**********************************/

 create_packing_unpacking_process_from_scenariosdb (scenarios_list, scenarioid, 'PackingOutPanPlan1',

'UnpackingInPreErection1', elements_list, joins_list, 'Bloc Assembling', 'S', 1)

 create_packing_unpacking_process_from_scenariosdb (scenarios_list, scenarioid, 'PackingOutpreerection1',

'UnpackingInDryDock1', elements_list, joins_list, 'Bloc Erection', 'B', 1)

 create_packing_unpacking_process_from_scenariosdb (scenarios_list, scenarioid, '',

'UnpackingInPreErection1', elements_list, joins_list, 'Bloc Erection', 'B', 0)

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 89

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

 case 6:

 -- Create the eclasses

 logger("************************", 1)

 logger ("Creating the elements",1)

 create_pclass_from_scenariosdb(elements_list, scenarios_list, scenarioid, 'P' , 'PC_' , '' , '')

 create_eclass(objects_list,modelid,eclasslib)

 change_source_logic_ssy()

 -- Create the cranes

 logger("************************", 1)

 logger ("Creating the cranes",1)

 create_cranes_from_db(cranes_list, modelid, eclasslib, objects_list)

 logger("************************", 1)

 logger ("Setting the connections",1)

 create_connections(objects_list, objconn_list, modelid)

 pfrac_source_pull(elements_list, 'P')

 pfrac_sink_pull(elements_list, 'P')

 exec_bcl_cmd("READ ECLASS FROM 'C:\\simula_cnpq-23-2013\\eclasses\\1_2.ecl'")

 exec_bcl_cmd("READ ECLASS FROM 'C:\\simula_cnpq-23-2013\\eclasses\\1_3.ecl'")

 exec_bcl_cmd("READ ECLASS FROM 'C:\\simula_cnpq-23-2013\\eclasses\\2_2.ecl'")

 exec_bcl_cmd("READ ECLASS FROM 'C:\\simula_cnpq-23-2013\\eclasses\\2_3.ecl'")

P 90 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

 exec_bcl_cmd("READ ECLASS FROM 'C:\\simula_cnpq-23-2013\\eclasses\\3_2.ecl'")

 exec_bcl_cmd("READ ECLASS FROM 'C:\\simula_cnpq-23-2013\\eclasses\\3_3.ecl'")

 exec_bcl_cmd("SET 'Source2' IAT TO 509")

 exec_bcl_cmd("SET 'Sink1' IRT TO 509")

 exec_bcl_cmd("CREATE UNLOAD PROCESS 'wait_to_unload'")

 exec_bcl_cmd("SET PROCESS 'wait_to_unload' PART PRE_REQUIREMENT TO ANY PART CLASS

1189")

 exec_bcl_cmd("SET 'Delivery' UNLOAD PROCESS to 'wait_to_unload'")

 case 7:

 -- Create the pclasses

 logger("************************", 1)

 logger ("Creating the parts",1)

[……..]

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 91

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

7.6. Appendix F

REM /**/

REM This is the batch to control QUEST

REM Just to you know, when i use the command REM, i'm making a documention comment

REM And when i use :: i'm commenting a code line (except with the command IF)

REM/**/

REM So let's start...

REM This is the new batch for quest

REM It should be more maintanable now

REM/**/

REM Just for sure, i'm now re-compilling all the SCLs archives from the project

cls

::CALL C:\SIMULA_CNPQ-23-2013\GO_BCL_Compilator_Otimization.bat

::CALL C:\SIMULA_CNPQ-23-2013\GO_Configs.bat

cls

REM/**/

REM let's start cleaning wheatever we have on the console now

cls

REM/**/

REM done, now let's get the path where i'm and set all the default paths as variables. NOTE

REM Maybe is needed to change these vars if the location is not the default

cls

:: the location of the batch

::SET var_path=%~dp0

::

:: the location of deneb quest

::SET var_quest_path=C:\deneb\quest

::

::test vars

::ECHO %var_path%

::ECHO %var_quest_path%

P 92 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

cls

REM/**/

REM Now let's summon QUEST, and pass all the BCL commands via console, and create a log file in the

process.

REM Note that the QUEST program MUST BE INSTALLED IN THE LOCAL "C:\deneb\quest\quest"

REM Note also that this part of the code i just copied from the existing quest.bat

REM since is needed the license for quest work

REM/**/

REM *Not my code star here*

cls

@echo off

set DENEB_PRODUCT=quest

set DENEB_PATH=C:\deneb

set CNPQ_BCL_PATH=C:\SIMULA_CNPQ-23-2013\BCLMACROS

if "%DENEB_PROD_DIR%" == "" set DENEB_PROD_DIR=%DENEB_PATH%\quest

if "%TMP%" == "" set TMP=C:\tmp

if "%TMPDIR%" == "" set TMPDIR=C:\tmp

if "%LM_LICENSE_FILE%" == "" set LM_LICENSE_FILE=1700@serverlabsen.peno.coppe.ufrj.br

if "%P_SCHEMA%" == "" set P_SCHEMA=%DENEB_PROD_DIR%\parasolid

if "%COP_CONFIG_LIB%" == "" set COP_CONFIG_LIB=%DENEB_PROD_DIR%\COP\

rem The message directory where quest_msg is written &

rem the home directory from where .qpthfig is picked can be set

rem set DELMIA_DEFAULT_MSG_DIR=%TMPDIR%

rem set HOMEDRIVE=C:/

rem set HOMEPATH=deneb

set VIEWER_PROG=C:\Program Files\Internet Explorer\IEXPLORE.EXE

Improving Steel Stockyard Planning by Coupling Optimization with Stochastic Simulation 93

“EMSHIP” Erasmus Mundus Master Course, period of study September 2014 – February 2016

set DENEB_DOC_VIEWER=%VIEWER_PROG%

%DENEB_PROD_DIR%\docs\%DENEB_PRODUCT%_HOME\HOMEPAGE.html

if "%TMPDIR%" == "" goto TMPDIR_ERROR

if not exist %DENEB_PROD_DIR%\quest.exe goto EXEC_NOT_FOUND

set OLD_PATH=%PATH%

set PATH=%DENEB_PROD_DIR%\lib;%DENEB_PROD_DIR%\bin;%PATH%

rem Set up path for 3d expert

set PATH=%DENEB_PROD_DIR%\3dexpert\intel_a\code\bin;%PATH%

rem Set up script for the UG direct server

if not exist %DENEB_PROD_DIR%\UG\UGDSetup.bat goto SKIP_UG

call %DENEB_PROD_DIR%\UG\UGDSetup.bat

:SKIP_UG

rem Set up script for the CATIA V5 server

if not exist %DENEB_PROD_DIR%\V5\V5Setup.bat goto SKIP_V5

call %DENEB_PROD_DIR%\V5\V5Setup.bat

:SKIP_V5

rem Set up script for the PROE direct server

if not exist %DENEB_PROD_DIR%\PROE\PROEDSetup.bat goto SKIP_PROE

call %DENEB_PROD_DIR%\PROE\PROEDSetup.bat

:SKIP_PROE

copy %CNPQ_BCL_PATH%\start_ot.bcl %DENEB_PATH%\quest\

cd /d %DENEB_PROD_DIR%

echo initializing and running %DENEB_PRODUCT%

%DENEB_PRODUCT%.exe CONFIGS\SIMULA_CNPQ-23-2013 CONFIGS\quest -b <start_ot.bcl>

errorfile.txt

P 94 Atakan SELAMOGLU

Master Thesis developed at West Pomeranian University of Technology, Szczecin, Poland and Federal

University of Rio de Janeiro, Rio de Janeiro, Brazil

rem Restore original path

set PATH=%OLD_PATH%

set OLD_PATH=

goto CLEAN_EXIT

:TMPDIR_ERROR

@echo Error using TMPDIR=%TMPDIR%

goto ERROR_EXIT

:EXEC_NOT_FOUND

@echo Cannot find %DENEB_BIN_DIR%\quest.exe

goto ERROR_EXIT

:ERROR_EXIT

pause

:CLEAN_EXIT

cls

